Global attractor for the perturbed viscous
Cahn–Hilliard equation
Colloquium Mathematicum, Tome 109 (2007) no. 2, pp. 217-229
Cet article a éte moissonné depuis la source Institute of Mathematics Polish Academy of Sciences
We consider the initial-boundary value problem for the perturbed viscous Cahn–Hilliard equation in space dimension $n\leq 3$. Applying semigroup theory, we formulate this problem as an abstract evolutionary equation with a sectorial operator in the main part. We show that the semigroup generated by this problem admits a global attractor in the phase space $(H^2({\mit\Omega} )\cap H^{1}_{0}({\mit\Omega} ))\times L^2({\mit\Omega} )$ and characterize its structure.
Keywords:
consider initial boundary value problem perturbed viscous cahn hilliard equation space dimension leq applying semigroup theory formulate problem abstract evolutionary equation sectorial operator main part semigroup generated problem admits global attractor phase space mit omega cap mit omega times mit omega characterize its structure
Affiliations des auteurs :
Maria B. Kania  1
@article{10_4064_cm109_2_4,
author = {Maria B. Kania},
title = {Global attractor for the perturbed viscous
{Cahn{\textendash}Hilliard} equation},
journal = {Colloquium Mathematicum},
pages = {217--229},
year = {2007},
volume = {109},
number = {2},
doi = {10.4064/cm109-2-4},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/cm109-2-4/}
}
Maria B. Kania. Global attractor for the perturbed viscous Cahn–Hilliard equation. Colloquium Mathematicum, Tome 109 (2007) no. 2, pp. 217-229. doi: 10.4064/cm109-2-4
Cité par Sources :