Wiener amalgam spaces with respect to
quasi-Banach spaces
Colloquium Mathematicum, Tome 109 (2007) no. 2, pp. 345-362
Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences
We generalize the theory of Wiener amalgam spaces on locally compact groups to quasi-Banach spaces. As a main result we provide convolution relations for such spaces. Also we weaken the technical assumption that the global component is invariant under right translations, which is new even for the classical Banach space case. To illustrate our theory we discuss in detail an example on the $ax+b$ group.
Keywords:
generalize theory wiener amalgam spaces locally compact groups quasi banach spaces main result provide convolution relations spaces weaken technical assumption global component invariant under right translations which even classical banach space illustrate theory discuss detail example group
Affiliations des auteurs :
Holger Rauhut 1
@article{10_4064_cm109_2_13,
author = {Holger Rauhut},
title = {Wiener amalgam spaces with respect to
{quasi-Banach} spaces},
journal = {Colloquium Mathematicum},
pages = {345--362},
publisher = {mathdoc},
volume = {109},
number = {2},
year = {2007},
doi = {10.4064/cm109-2-13},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/cm109-2-13/}
}
Holger Rauhut. Wiener amalgam spaces with respect to quasi-Banach spaces. Colloquium Mathematicum, Tome 109 (2007) no. 2, pp. 345-362. doi: 10.4064/cm109-2-13
Cité par Sources :