A convolution property of some measures
with self-similar fractal support
Colloquium Mathematicum, Tome 109 (2007) no. 2, pp. 171-177
Cet article a éte moissonné depuis la source Institute of Mathematics Polish Academy of Sciences
We define a class of measures having the following properties:$\bullet$
the measures are supported on self-similar fractal subsets of the unit cube
$I^{M}=[0,1)^{M}$, with 0 and 1 identified as necessary;
$\bullet$
the measures are singular with respect to normalized Lebesgue measure $m$ on
$I^{M}$;
$\bullet$
the measures have the convolution property that $ \mu * L^{p} \subseteq
L^{p + \varepsilon} $ for some $ \varepsilon = \varepsilon (p) > 0 $ and all
$ p \in (1, \infty ) $.
We will show that if $({1}/{p},{1}/{q})$ lies in the triangle with
vertices $(0,0)$, $(1,1)$ and $({1}/{2},{1}/{3})$,
then $\mu * L^{p} \subseteq L^{q}$ for any measure $\mu$ in our class.
Keywords:
define class measures having following properties bullet measures supported self similar fractal subsets unit cube identified necessary bullet measures singular respect normalized lebesgue measure bullet measures have convolution property * subseteq varepsilon varepsilon varepsilon infty lies triangle vertices * subseteq measure class
Affiliations des auteurs :
Denise Szecsei  1
@article{10_4064_cm109_2_1,
author = {Denise Szecsei},
title = {A convolution property of some measures
with self-similar fractal support},
journal = {Colloquium Mathematicum},
pages = {171--177},
year = {2007},
volume = {109},
number = {2},
doi = {10.4064/cm109-2-1},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/cm109-2-1/}
}
TY - JOUR AU - Denise Szecsei TI - A convolution property of some measures with self-similar fractal support JO - Colloquium Mathematicum PY - 2007 SP - 171 EP - 177 VL - 109 IS - 2 UR - http://geodesic.mathdoc.fr/articles/10.4064/cm109-2-1/ DO - 10.4064/cm109-2-1 LA - en ID - 10_4064_cm109_2_1 ER -
Denise Szecsei. A convolution property of some measures with self-similar fractal support. Colloquium Mathematicum, Tome 109 (2007) no. 2, pp. 171-177. doi: 10.4064/cm109-2-1
Cité par Sources :