A convolution property of some measures with self-similar fractal support
Colloquium Mathematicum, Tome 109 (2007) no. 2, pp. 171-177.

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

We define a class of measures having the following properties:$\bullet$ the measures are supported on self-similar fractal subsets of the unit cube $I^{M}=[0,1)^{M}$, with 0 and 1 identified as necessary; $\bullet$ the measures are singular with respect to normalized Lebesgue measure $m$ on $I^{M}$; $\bullet$ the measures have the convolution property that $ \mu * L^{p} \subseteq L^{p + \varepsilon} $ for some $ \varepsilon = \varepsilon (p) > 0 $ and all $ p \in (1, \infty ) $. We will show that if $({1}/{p},{1}/{q})$ lies in the triangle with vertices $(0,0)$, $(1,1)$ and $({1}/{2},{1}/{3})$, then $\mu * L^{p} \subseteq L^{q}$ for any measure $\mu$ in our class.
DOI : 10.4064/cm109-2-1
Keywords: define class measures having following properties bullet measures supported self similar fractal subsets unit cube identified necessary bullet measures singular respect normalized lebesgue measure bullet measures have convolution property * subseteq varepsilon varepsilon varepsilon infty lies triangle vertices * subseteq measure class

Denise Szecsei 1

1 Department of Mathematics Stetson University P.O. Box 7532 Daytona Beach, FL 32116, U.S.A.
@article{10_4064_cm109_2_1,
     author = {Denise Szecsei},
     title = {A convolution property of some measures 
with self-similar fractal support},
     journal = {Colloquium Mathematicum},
     pages = {171--177},
     publisher = {mathdoc},
     volume = {109},
     number = {2},
     year = {2007},
     doi = {10.4064/cm109-2-1},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/cm109-2-1/}
}
TY  - JOUR
AU  - Denise Szecsei
TI  - A convolution property of some measures 
with self-similar fractal support
JO  - Colloquium Mathematicum
PY  - 2007
SP  - 171
EP  - 177
VL  - 109
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/cm109-2-1/
DO  - 10.4064/cm109-2-1
LA  - en
ID  - 10_4064_cm109_2_1
ER  - 
%0 Journal Article
%A Denise Szecsei
%T A convolution property of some measures 
with self-similar fractal support
%J Colloquium Mathematicum
%D 2007
%P 171-177
%V 109
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/cm109-2-1/
%R 10.4064/cm109-2-1
%G en
%F 10_4064_cm109_2_1
Denise Szecsei. A convolution property of some measures 
with self-similar fractal support. Colloquium Mathematicum, Tome 109 (2007) no. 2, pp. 171-177. doi : 10.4064/cm109-2-1. http://geodesic.mathdoc.fr/articles/10.4064/cm109-2-1/

Cité par Sources :