Polynomially growing pluriharmonic functions on Siegel domains
Colloquium Mathematicum, Tome 109 (2007) no. 1, pp. 31-60
Cet article a éte moissonné depuis la source Institute of Mathematics Polish Academy of Sciences
Let $\cal{D}$ be a symmetric type two Siegel domain over the cone
of positive definite Hermitian matrices and let $\mathbf{N}({\mit\Phi} )\mathbf{S}$ be a solvable Lie
group acting simply transitively on $\mathcal{D}$. We characterize
polynomially growing pluriharmonic functions on $\mathcal{D}$ by
means of three $\mathbf{N}({\mit\Phi} )\mathbf{S}$-invariant second order elliptic degenerate operators.
Keywords:
cal symmetric type siegel domain cone positive definite hermitian matrices mathbf mit phi mathbf solvable lie group acting simply transitively mathcal characterize polynomially growing pluriharmonic functions mathcal means three mathbf mit phi mathbf invariant second order elliptic degenerate operators
Affiliations des auteurs :
Monika Gilżyńska  1
@article{10_4064_cm109_1_4,
author = {Monika Gil\.zy\'nska},
title = {Polynomially growing pluriharmonic functions on {Siegel} domains},
journal = {Colloquium Mathematicum},
pages = {31--60},
year = {2007},
volume = {109},
number = {1},
doi = {10.4064/cm109-1-4},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/cm109-1-4/}
}
Monika Gilżyńska. Polynomially growing pluriharmonic functions on Siegel domains. Colloquium Mathematicum, Tome 109 (2007) no. 1, pp. 31-60. doi: 10.4064/cm109-1-4
Cité par Sources :