A decomposition theorem for a class of continua for which the set function $T$ is continuous
Colloquium Mathematicum, Tome 109 (2007) no. 1, pp. 163-170.

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

We prove a decomposition theorem for a class of continua for which F. B.. Jones's set function ${\cal T}$ is continuous. This gives a partial answer to a question of D. Bellamy.
DOI : 10.4064/cm109-1-13
Keywords: prove decomposition theorem class continua which nbsp nbsp joness set function cal continuous gives partial answer question nbsp bellamy

Sergio Macías 1

1 Instituto de Matemáticas Universidad Nacional Autónoma de México Circuito Exterior, Ciudad Universitaria C.P. 04510 México D.F., México
@article{10_4064_cm109_1_13,
     author = {Sergio Mac{\'\i}as},
     title = {A decomposition theorem for a class of continua
 for which the set function $T$ is continuous},
     journal = {Colloquium Mathematicum},
     pages = {163--170},
     publisher = {mathdoc},
     volume = {109},
     number = {1},
     year = {2007},
     doi = {10.4064/cm109-1-13},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/cm109-1-13/}
}
TY  - JOUR
AU  - Sergio Macías
TI  - A decomposition theorem for a class of continua
 for which the set function $T$ is continuous
JO  - Colloquium Mathematicum
PY  - 2007
SP  - 163
EP  - 170
VL  - 109
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/cm109-1-13/
DO  - 10.4064/cm109-1-13
LA  - en
ID  - 10_4064_cm109_1_13
ER  - 
%0 Journal Article
%A Sergio Macías
%T A decomposition theorem for a class of continua
 for which the set function $T$ is continuous
%J Colloquium Mathematicum
%D 2007
%P 163-170
%V 109
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/cm109-1-13/
%R 10.4064/cm109-1-13
%G en
%F 10_4064_cm109_1_13
Sergio Macías. A decomposition theorem for a class of continua
 for which the set function $T$ is continuous. Colloquium Mathematicum, Tome 109 (2007) no. 1, pp. 163-170. doi : 10.4064/cm109-1-13. http://geodesic.mathdoc.fr/articles/10.4064/cm109-1-13/

Cité par Sources :