Weighted norm estimates and $L_{p}$-spectral independence of linear operators
Colloquium Mathematicum, Tome 109 (2007) no. 1, pp. 129-146.

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

We investigate the $L_p$-spectrum of linear operators defined consistently on $L_p({\mit\Omega} )$ for $p_0\le p\le p_1$, where $({\mit\Omega} ,\mu )$ is an arbitrary $\sigma $-finite measure space and $1\le p_0 p_1\le \infty $. We prove $p$-independence of the $L_p$-spectrum assuming weighted norm estimates. The assumptions are formulated in terms of a measurable semi-metric $d$ on $({\mit\Omega} ,\mu )$; the balls with respect to this semi-metric are required to satisfy a subexponential volume growth condition. We show how previous results on $L_p$-spectral independence can be treated as special cases of our results and give examples—including strictly elliptic operators in Euclidean space and generators of semigroups that satisfy (generalized) Gaussian bounds—to indicate improvements.
DOI : 10.4064/cm109-1-11
Keywords: investigate p spectrum linear operators defined consistently mit omega where mit omega arbitrary sigma finite measure space infty prove p independence p spectrum assuming weighted norm estimates assumptions formulated terms measurable semi metric mit omega balls respect semi metric required satisfy subexponential volume growth condition previous results p spectral independence treated special cases results examples including strictly elliptic operators euclidean space generators semigroups satisfy generalized gaussian bounds indicate improvements

Peer C. Kunstmann 1 ; Hendrik Vogt 2

1 Mathematisches Institut I Universität Karlsruhe Englerstraße 2 D-76128 Karlsruhe, Germany
2 Institut für Analysis Fachrichtung Mathematik Technische Universität Dresden D-01062 Dresden, Germany
@article{10_4064_cm109_1_11,
     author = {Peer C. Kunstmann and Hendrik Vogt},
     title = {Weighted norm estimates and $L_{p}$-spectral
 independence of linear operators},
     journal = {Colloquium Mathematicum},
     pages = {129--146},
     publisher = {mathdoc},
     volume = {109},
     number = {1},
     year = {2007},
     doi = {10.4064/cm109-1-11},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/cm109-1-11/}
}
TY  - JOUR
AU  - Peer C. Kunstmann
AU  - Hendrik Vogt
TI  - Weighted norm estimates and $L_{p}$-spectral
 independence of linear operators
JO  - Colloquium Mathematicum
PY  - 2007
SP  - 129
EP  - 146
VL  - 109
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/cm109-1-11/
DO  - 10.4064/cm109-1-11
LA  - en
ID  - 10_4064_cm109_1_11
ER  - 
%0 Journal Article
%A Peer C. Kunstmann
%A Hendrik Vogt
%T Weighted norm estimates and $L_{p}$-spectral
 independence of linear operators
%J Colloquium Mathematicum
%D 2007
%P 129-146
%V 109
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/cm109-1-11/
%R 10.4064/cm109-1-11
%G en
%F 10_4064_cm109_1_11
Peer C. Kunstmann; Hendrik Vogt. Weighted norm estimates and $L_{p}$-spectral
 independence of linear operators. Colloquium Mathematicum, Tome 109 (2007) no. 1, pp. 129-146. doi : 10.4064/cm109-1-11. http://geodesic.mathdoc.fr/articles/10.4064/cm109-1-11/

Cité par Sources :