On the uniform behaviour of the Frobenius closures of ideals
Colloquium Mathematicum, Tome 109 (2007) no. 1, pp. 1-7.

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

Let ${\mathfrak a}$ be a proper ideal of a commutative Noetherian ring $R$ of prime characteristic $p$ and let $Q({\mathfrak a})$ be the smallest positive integer $m$ such that $({\mathfrak a} ^{\rm F})^{[p^m]} = {\mathfrak a} ^{[p^m]}$, where ${\mathfrak a} ^{\rm F}$ is the Frobenius closure of ${\mathfrak a}$. This paper is concerned with the question whether the set $ \{ Q({\mathfrak a}^{[p^m]}) : m \in {\mathbb N}_0 \}$ is bounded. We give an affirmative answer in the case that the ideal ${\mathfrak a}$ is generated by an u.s.$d$-sequence $c_1, \dots ,c_n$ for $R$ such that(i) the map $R/\sum_{j=1}^n Rc_j\to R/\sum_{j=1}^n Rc_j^{2}$ induced by multiplication by $c_1 \dots c_n$ is an $R$-monomorphism; (ii) for all ${\mathfrak p} \in \mathop{\rm ass}\nolimits (c_1^j, \dots ,c_n^j) $, $c_1/1,\dots ,c_n /1$ is a ${\mathfrak p} R_{{\mathfrak p}}$-filter regular sequence for $R_{{\mathfrak p}}$ for $j \in \{1, 2 \}$.
DOI : 10.4064/cm109-1-1
Keywords: mathfrak proper ideal commutative noetherian ring prime characteristic mathfrak smallest positive integer mathfrak mathfrak where mathfrak frobenius closure mathfrak paper concerned question whether set mathfrak mathbb bounded affirmative answer the ideal mathfrak generated d sequence dots map sum sum induced multiplication dots r monomorphism mathfrak mathop ass nolimits dots dots mathfrak mathfrak filter regular sequence mathfrak

K. Khashyarmanesh 1

1 Department of Mathematics Ferdowsi University of Mashhad P.O. Box 1159-91775, Mashhad, Iran and Institute for Studies in Theoretical Physics and Mathematics P.O. Box 19395-5746, Tehran, Iran
@article{10_4064_cm109_1_1,
     author = {K. Khashyarmanesh},
     title = {On the uniform  behaviour of {the
Frobenius} closures of ideals},
     journal = {Colloquium Mathematicum},
     pages = {1--7},
     publisher = {mathdoc},
     volume = {109},
     number = {1},
     year = {2007},
     doi = {10.4064/cm109-1-1},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/cm109-1-1/}
}
TY  - JOUR
AU  - K. Khashyarmanesh
TI  - On the uniform  behaviour of the
Frobenius closures of ideals
JO  - Colloquium Mathematicum
PY  - 2007
SP  - 1
EP  - 7
VL  - 109
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/cm109-1-1/
DO  - 10.4064/cm109-1-1
LA  - en
ID  - 10_4064_cm109_1_1
ER  - 
%0 Journal Article
%A K. Khashyarmanesh
%T On the uniform  behaviour of the
Frobenius closures of ideals
%J Colloquium Mathematicum
%D 2007
%P 1-7
%V 109
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/cm109-1-1/
%R 10.4064/cm109-1-1
%G en
%F 10_4064_cm109_1_1
K. Khashyarmanesh. On the uniform  behaviour of the
Frobenius closures of ideals. Colloquium Mathematicum, Tome 109 (2007) no. 1, pp. 1-7. doi : 10.4064/cm109-1-1. http://geodesic.mathdoc.fr/articles/10.4064/cm109-1-1/

Cité par Sources :