On the uniform behaviour of the
Frobenius closures of ideals
Colloquium Mathematicum, Tome 109 (2007) no. 1, pp. 1-7
Cet article a éte moissonné depuis la source Institute of Mathematics Polish Academy of Sciences
Let ${\mathfrak a}$ be a proper ideal of a commutative Noetherian ring $R$
of prime characteristic $p$ and let $Q({\mathfrak a})$ be the smallest
positive integer $m$ such that $({\mathfrak a} ^{\rm F})^{[p^m]} = {\mathfrak a} ^{[p^m]}$,
where ${\mathfrak a} ^{\rm F}$ is the Frobenius closure of ${\mathfrak a}$. This paper is
concerned with the question whether the set $ \{
Q({\mathfrak a}^{[p^m]}) : m \in {\mathbb N}_0 \}$ is bounded. We give an
affirmative answer in the case that the
ideal ${\mathfrak a}$ is generated by an u.s.$d$-sequence $c_1, \dots
,c_n$ for $R$ such that(i) the map
$R/\sum_{j=1}^n Rc_j\to R/\sum_{j=1}^n Rc_j^{2}$ induced by multiplication
by $c_1 \dots c_n$ is an $R$-monomorphism;
(ii) for all
${\mathfrak p} \in \mathop{\rm ass}\nolimits (c_1^j, \dots ,c_n^j) $, $c_1/1,\dots ,c_n /1$ is
a ${\mathfrak p} R_{{\mathfrak p}}$-filter regular sequence for $R_{{\mathfrak p}}$ for $j \in
\{1, 2 \}$.
Keywords:
mathfrak proper ideal commutative noetherian ring prime characteristic mathfrak smallest positive integer mathfrak mathfrak where mathfrak frobenius closure mathfrak paper concerned question whether set mathfrak mathbb bounded affirmative answer the ideal mathfrak generated d sequence dots map sum sum induced multiplication dots r monomorphism mathfrak mathop ass nolimits dots dots mathfrak mathfrak filter regular sequence mathfrak
Affiliations des auteurs :
K. Khashyarmanesh 1
@article{10_4064_cm109_1_1,
author = {K. Khashyarmanesh},
title = {On the uniform behaviour of {the
Frobenius} closures of ideals},
journal = {Colloquium Mathematicum},
pages = {1--7},
year = {2007},
volume = {109},
number = {1},
doi = {10.4064/cm109-1-1},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/cm109-1-1/}
}
K. Khashyarmanesh. On the uniform behaviour of the Frobenius closures of ideals. Colloquium Mathematicum, Tome 109 (2007) no. 1, pp. 1-7. doi: 10.4064/cm109-1-1
Cité par Sources :