On the Fourier transform, Boehmians, and distributions
Colloquium Mathematicum, Tome 108 (2007) no. 2, pp. 263-276.

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

We introduce some spaces of generalized functions that are defined as generalized quotients and Boehmians. The spaces provide simple and natural frameworks for extensions of the Fourier transform.
DOI : 10.4064/cm108-2-8
Keywords: introduce spaces generalized functions defined generalized quotients boehmians spaces provide simple natural frameworks extensions fourier transform

Dragu Atanasiu 1 ; Piotr Mikusiński 2

1 Borås University Borås, Sweden
2 Department of Mathematics University of Central Florida Orlando, FL 32816-1364, U.S.A.
@article{10_4064_cm108_2_8,
     author = {Dragu Atanasiu and Piotr Mikusi\'nski},
     title = {On the {Fourier} transform,
 {Boehmians,} and distributions},
     journal = {Colloquium Mathematicum},
     pages = {263--276},
     publisher = {mathdoc},
     volume = {108},
     number = {2},
     year = {2007},
     doi = {10.4064/cm108-2-8},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/cm108-2-8/}
}
TY  - JOUR
AU  - Dragu Atanasiu
AU  - Piotr Mikusiński
TI  - On the Fourier transform,
 Boehmians, and distributions
JO  - Colloquium Mathematicum
PY  - 2007
SP  - 263
EP  - 276
VL  - 108
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/cm108-2-8/
DO  - 10.4064/cm108-2-8
LA  - en
ID  - 10_4064_cm108_2_8
ER  - 
%0 Journal Article
%A Dragu Atanasiu
%A Piotr Mikusiński
%T On the Fourier transform,
 Boehmians, and distributions
%J Colloquium Mathematicum
%D 2007
%P 263-276
%V 108
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/cm108-2-8/
%R 10.4064/cm108-2-8
%G en
%F 10_4064_cm108_2_8
Dragu Atanasiu; Piotr Mikusiński. On the Fourier transform,
 Boehmians, and distributions. Colloquium Mathematicum, Tome 108 (2007) no. 2, pp. 263-276. doi : 10.4064/cm108-2-8. http://geodesic.mathdoc.fr/articles/10.4064/cm108-2-8/

Cité par Sources :