Pseudo-Bochner-flat locally conformal
Kähler submanifolds
Colloquium Mathematicum, Tome 108 (2007) no. 2, pp. 305-315
Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences
Let $\widetilde M$ be an $(m+r)$-dimensional
locally conformal Kähler (l.c.K.)
manifold and let $M$ be an $m$-dimensional l.c.K. submanifold
of $\widetilde M$ (i.e.,
a complex submanifold with the induced l.c.K. structure). Assume that both $\widetilde M$ and $M$ are pseudo-Bochner-flat. We prove that if
$r m$, then $M$ is totally geodesic (in the Hermitian sense) in $\widetilde M$.
This is the l.c.K. version of Iwatani's result for Bochner-flat Kähler submanifolds.
Mots-clés :
widetilde dimensional locally conformal hler manifold m dimensional submanifold widetilde complex submanifold induced structure assume widetilde pseudo bochner flat prove totally geodesic hermitian sense widetilde version iwatanis result bochner flat hler submanifolds
Affiliations des auteurs :
Koji Matsuo 1
@article{10_4064_cm108_2_12,
author = {Koji Matsuo},
title = {Pseudo-Bochner-flat locally conformal
{K\"ahler} submanifolds},
journal = {Colloquium Mathematicum},
pages = {305--315},
publisher = {mathdoc},
volume = {108},
number = {2},
year = {2007},
doi = {10.4064/cm108-2-12},
language = {de},
url = {http://geodesic.mathdoc.fr/articles/10.4064/cm108-2-12/}
}
Koji Matsuo. Pseudo-Bochner-flat locally conformal Kähler submanifolds. Colloquium Mathematicum, Tome 108 (2007) no. 2, pp. 305-315. doi: 10.4064/cm108-2-12
Cité par Sources :