Order convolution and vector-valued multipliers
Colloquium Mathematicum, Tome 108 (2007) no. 1, pp. 53-61.

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

Let $I=(0,\infty )$ with the usual topology. For $x,y\in I$, we define $xy= \max(x,y)$. Then $I$ becomes a locally compact commutative topological semigroup. The Banach space $L^1(I)$ of all Lebesgue integrable functions on $I$ becomes a commutative semisimple Banach algebra with order convolution as multiplication. A bounded linear operator $T$ on $L^1(I)$ is called a multiplier of $L^1(I)$ if $T(f\star g)=f\star Tg$ for all $f,g \in L^1(I)$. The space of multipliers of $L^1(I)$ was determined by Johnson and Lahr. Let $X$ be a Banach space and $L^1(I,X)$ be the Banach space of all $X$-valued Bochner integrable functions on $I$. We show that $L^1(I,X)$ becomes an $L^1(I)$-Banach module. Suppose $X$ and $Y$ are Banach spaces. A bounded linear operator $T$ from $L^1(I,X)$ to $L^1(I,Y)$ is called a multiplier if $T(f\star g)=f\star Tg$ for all $f\in L^1(I)$ and $g\in L^1(I,X)$. In this paper, we characterize the multipliers from $L^1(I,X)$ to $L^1(I,Y)$.
DOI : 10.4064/cm108-1-5
Keywords: infty usual topology define max becomes locally compact commutative topological semigroup banach space lebesgue integrable functions becomes commutative semisimple banach algebra order convolution multiplication bounded linear operator called multiplier star star space multipliers determined johnson lahr banach space banach space x valued bochner integrable functions becomes banach module suppose banach spaces bounded linear operator called multiplier star star paper characterize multipliers

U. B. Tewari 1

1 Department of Mathematics and Statistics Indian Institute of Technology Kanpur Kanpur 208 016, India
@article{10_4064_cm108_1_5,
     author = {U. B. Tewari},
     title = {Order convolution and vector-valued multipliers},
     journal = {Colloquium Mathematicum},
     pages = {53--61},
     publisher = {mathdoc},
     volume = {108},
     number = {1},
     year = {2007},
     doi = {10.4064/cm108-1-5},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/cm108-1-5/}
}
TY  - JOUR
AU  - U. B. Tewari
TI  - Order convolution and vector-valued multipliers
JO  - Colloquium Mathematicum
PY  - 2007
SP  - 53
EP  - 61
VL  - 108
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/cm108-1-5/
DO  - 10.4064/cm108-1-5
LA  - en
ID  - 10_4064_cm108_1_5
ER  - 
%0 Journal Article
%A U. B. Tewari
%T Order convolution and vector-valued multipliers
%J Colloquium Mathematicum
%D 2007
%P 53-61
%V 108
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/cm108-1-5/
%R 10.4064/cm108-1-5
%G en
%F 10_4064_cm108_1_5
U. B. Tewari. Order convolution and vector-valued multipliers. Colloquium Mathematicum, Tome 108 (2007) no. 1, pp. 53-61. doi : 10.4064/cm108-1-5. http://geodesic.mathdoc.fr/articles/10.4064/cm108-1-5/

Cité par Sources :