On the composition of
the Euler function and the sum of divisors function
Colloquium Mathematicum, Tome 108 (2007) no. 1, pp. 31-51
Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences
Let $H(n) = {\sigma (\phi (n))/\phi (\sigma (n))}$, where $\phi (n)$ is Euler's function and $\sigma (n)$ stands for the sum of the positive divisors of $n$. We obtain the maximal and minimal orders of $H(n)$ as well as its average order, and we also prove two density theorems. In particular, we answer a question raised by Golomb.
Keywords:
sigma phi phi sigma where phi eulers function sigma stands sum positive divisors obtain maximal minimal orders its average order prove density theorems particular answer question raised golomb
Affiliations des auteurs :
Jean-Marie De Koninck 1 ; Florian Luca 2
@article{10_4064_cm108_1_4,
author = {Jean-Marie De Koninck and Florian Luca},
title = {On the composition of
the {Euler} function and the sum of divisors function},
journal = {Colloquium Mathematicum},
pages = {31--51},
publisher = {mathdoc},
volume = {108},
number = {1},
year = {2007},
doi = {10.4064/cm108-1-4},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/cm108-1-4/}
}
TY - JOUR AU - Jean-Marie De Koninck AU - Florian Luca TI - On the composition of the Euler function and the sum of divisors function JO - Colloquium Mathematicum PY - 2007 SP - 31 EP - 51 VL - 108 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.4064/cm108-1-4/ DO - 10.4064/cm108-1-4 LA - en ID - 10_4064_cm108_1_4 ER -
%0 Journal Article %A Jean-Marie De Koninck %A Florian Luca %T On the composition of the Euler function and the sum of divisors function %J Colloquium Mathematicum %D 2007 %P 31-51 %V 108 %N 1 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.4064/cm108-1-4/ %R 10.4064/cm108-1-4 %G en %F 10_4064_cm108_1_4
Jean-Marie De Koninck; Florian Luca. On the composition of the Euler function and the sum of divisors function. Colloquium Mathematicum, Tome 108 (2007) no. 1, pp. 31-51. doi: 10.4064/cm108-1-4
Cité par Sources :