Embedding a topological group into a connected group
Colloquium Mathematicum, Tome 108 (2007) no. 1, pp. 159-162.

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

It was proved in [HM] that each topological group $(G,\cdot ,\tau )$ may be embedded into a connected topological group $(\widehat {G}, \bullet , \widehat {\tau })$. In fact, two methods of introducing $\widehat {\tau }$ were given. In this note we show relations between them.
DOI : 10.4064/cm108-1-14
Keywords: proved each topological group cdot tau may embedded connected topological group widehat bullet widehat tau methods introducing widehat tau given note relations between

Ryo Ohashi 1

1 Department of Mathematics Kings's College 133 North River Street Wilkes Barre, PA 18711, U.S.A.
@article{10_4064_cm108_1_14,
     author = {Ryo Ohashi},
     title = {Embedding a topological group
 into a connected group},
     journal = {Colloquium Mathematicum},
     pages = {159--162},
     publisher = {mathdoc},
     volume = {108},
     number = {1},
     year = {2007},
     doi = {10.4064/cm108-1-14},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/cm108-1-14/}
}
TY  - JOUR
AU  - Ryo Ohashi
TI  - Embedding a topological group
 into a connected group
JO  - Colloquium Mathematicum
PY  - 2007
SP  - 159
EP  - 162
VL  - 108
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/cm108-1-14/
DO  - 10.4064/cm108-1-14
LA  - en
ID  - 10_4064_cm108_1_14
ER  - 
%0 Journal Article
%A Ryo Ohashi
%T Embedding a topological group
 into a connected group
%J Colloquium Mathematicum
%D 2007
%P 159-162
%V 108
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/cm108-1-14/
%R 10.4064/cm108-1-14
%G en
%F 10_4064_cm108_1_14
Ryo Ohashi. Embedding a topological group
 into a connected group. Colloquium Mathematicum, Tome 108 (2007) no. 1, pp. 159-162. doi : 10.4064/cm108-1-14. http://geodesic.mathdoc.fr/articles/10.4064/cm108-1-14/

Cité par Sources :