On the finiteness of the fundamental group
of a compact shrinking Ricci soliton
Colloquium Mathematicum, Tome 107 (2007) no. 2, pp. 297-299
Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences
Myers's classical theorem says that a compact Riemannian manifold with positive Ricci curvature has finite fundamental group. Using Ambrose's compactness criterion or J. Lott's results, M. Fernández-López and E. García-Río showed that the finiteness of the fundamental group remains valid for a compact shrinking Ricci soliton. We give a self-contained proof of this fact by estimating the lengths of shortest geodesic loops in each homotopy class.
Keywords:
myerss classical theorem says compact riemannian manifold positive ricci curvature has finite fundamental group using ambroses compactness criterion lotts results fern ndez l pez garc a r showed finiteness fundamental group remains valid compact shrinking ricci soliton self contained proof estimating lengths shortest geodesic loops each homotopy class
Affiliations des auteurs :
Zhenlei Zhang 1
@article{10_4064_cm107_2_9,
author = {Zhenlei Zhang},
title = {On the finiteness of the fundamental group
of a compact shrinking {Ricci} soliton},
journal = {Colloquium Mathematicum},
pages = {297--299},
publisher = {mathdoc},
volume = {107},
number = {2},
year = {2007},
doi = {10.4064/cm107-2-9},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/cm107-2-9/}
}
TY - JOUR AU - Zhenlei Zhang TI - On the finiteness of the fundamental group of a compact shrinking Ricci soliton JO - Colloquium Mathematicum PY - 2007 SP - 297 EP - 299 VL - 107 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.4064/cm107-2-9/ DO - 10.4064/cm107-2-9 LA - en ID - 10_4064_cm107_2_9 ER -
Zhenlei Zhang. On the finiteness of the fundamental group of a compact shrinking Ricci soliton. Colloquium Mathematicum, Tome 107 (2007) no. 2, pp. 297-299. doi: 10.4064/cm107-2-9
Cité par Sources :