Maximal operators of Fejér means of
double Vilenkin–Fourier series
Colloquium Mathematicum, Tome 107 (2007) no. 2, pp. 287-296
Cet article a éte moissonné depuis la source Institute of Mathematics Polish Academy of Sciences
The main aim of this paper is to prove that the maximal operator $\sigma
_{0}^{*}:=\sup_{n}| \sigma _{n,n}| $ of the Fejér means
of the double Vilenkin–Fourier series is not bounded from the Hardy space $%
H_{1/2}$ to the space weak-$L_{1/2}$.
Keywords:
main paper prove maximal operator sigma * sup sigma fej means double vilenkin fourier series bounded hardy space space weak l
Affiliations des auteurs :
István Blahota 1 ; György Gát 1 ; Ushangi Goginava 2
@article{10_4064_cm107_2_8,
author = {Istv\'an Blahota and Gy\"orgy G\'at and Ushangi Goginava},
title = {Maximal operators of {Fej\'er} means of
double {Vilenkin{\textendash}Fourier} series},
journal = {Colloquium Mathematicum},
pages = {287--296},
year = {2007},
volume = {107},
number = {2},
doi = {10.4064/cm107-2-8},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/cm107-2-8/}
}
TY - JOUR AU - István Blahota AU - György Gát AU - Ushangi Goginava TI - Maximal operators of Fejér means of double Vilenkin–Fourier series JO - Colloquium Mathematicum PY - 2007 SP - 287 EP - 296 VL - 107 IS - 2 UR - http://geodesic.mathdoc.fr/articles/10.4064/cm107-2-8/ DO - 10.4064/cm107-2-8 LA - en ID - 10_4064_cm107_2_8 ER -
%0 Journal Article %A István Blahota %A György Gát %A Ushangi Goginava %T Maximal operators of Fejér means of double Vilenkin–Fourier series %J Colloquium Mathematicum %D 2007 %P 287-296 %V 107 %N 2 %U http://geodesic.mathdoc.fr/articles/10.4064/cm107-2-8/ %R 10.4064/cm107-2-8 %G en %F 10_4064_cm107_2_8
István Blahota; György Gát; Ushangi Goginava. Maximal operators of Fejér means of double Vilenkin–Fourier series. Colloquium Mathematicum, Tome 107 (2007) no. 2, pp. 287-296. doi: 10.4064/cm107-2-8
Cité par Sources :