Circumradius versus side lengths of triangles in linear normed spaces
Colloquium Mathematicum, Tome 107 (2007) no. 2, pp. 273-285.

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

Given a planar convex body $B$ centered at the origin, we denote by ${\cal M}^2(B)$ the Minkowski plane (i.e., two-dimensional linear normed space) with the unit ball $B.$ For a triangle $T$ in ${\cal M}^2(B)$ we denote by $R_B(T)$ the least possible radius of a Minkowskian ball enclosing $T.$ We remark that in the terminology of location science $R_B(T)$ is the optimum of the minimax location problem with distance induced by $B$ and vertices of $T$ as existing facilities (see, for instance, [HM03] and the references therein). Using methods of linear algebra and convex geometry we find the lower and upper bound of $R_B(T)$ for the case when $B$ is an arbitrary planar convex body centered at the origin and $T \subseteq {\cal M}^2(B)$ is an arbitrary triangle with given Minkowskian side lengths $a_1, a_2, a_3.$ We also obtain some further results from the geometry of triangles in Minkowski planes, which are either corollaries of the main result or statements needed in the proof of the main result.
DOI : 10.4064/cm107-2-7
Keywords: given planar convex body centered origin denote cal minkowski plane two dimensional linear normed space unit ball triangle cal denote least possible radius minkowskian ball enclosing remark terminology location science optimum minimax location problem distance induced vertices existing facilities see instance references therein using methods linear algebra convex geometry lower upper bound arbitrary planar convex body centered origin subseteq cal arbitrary triangle given minkowskian side lengths obtain further results geometry triangles minkowski planes which either corollaries main result statements needed proof main result

Gennadiy Averkov 1

1 Institute of Algebra and Geometry Faculty of Mathematics Otto-von-Guericke University of Magdeburg Universitätsplatz 2 D-39106 Magdeburg, Germany
@article{10_4064_cm107_2_7,
     author = {Gennadiy Averkov},
     title = {Circumradius versus  side lengths
 of triangles in linear normed spaces},
     journal = {Colloquium Mathematicum},
     pages = {273--285},
     publisher = {mathdoc},
     volume = {107},
     number = {2},
     year = {2007},
     doi = {10.4064/cm107-2-7},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/cm107-2-7/}
}
TY  - JOUR
AU  - Gennadiy Averkov
TI  - Circumradius versus  side lengths
 of triangles in linear normed spaces
JO  - Colloquium Mathematicum
PY  - 2007
SP  - 273
EP  - 285
VL  - 107
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/cm107-2-7/
DO  - 10.4064/cm107-2-7
LA  - en
ID  - 10_4064_cm107_2_7
ER  - 
%0 Journal Article
%A Gennadiy Averkov
%T Circumradius versus  side lengths
 of triangles in linear normed spaces
%J Colloquium Mathematicum
%D 2007
%P 273-285
%V 107
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/cm107-2-7/
%R 10.4064/cm107-2-7
%G en
%F 10_4064_cm107_2_7
Gennadiy Averkov. Circumradius versus  side lengths
 of triangles in linear normed spaces. Colloquium Mathematicum, Tome 107 (2007) no. 2, pp. 273-285. doi : 10.4064/cm107-2-7. http://geodesic.mathdoc.fr/articles/10.4064/cm107-2-7/

Cité par Sources :