The multiplicity problem for indecomposable decompositions of modules over a finite-dimensional algebra. Algorithms and a computer algebra approach
Colloquium Mathematicum, Tome 107 (2007) no. 2, pp. 221-261.

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

Given a module $M$ over an algebra ${\mit\Lambda}$ and a complete set ${\cal{X}}$ of pairwise nonisomorphic indecomposable ${\mit\Lambda}$-modules, the problem of determining the vector $ m(M)=(m_X)_{X\in {\cal{X}}}\in {\mathbb N}^{\cal{X}}$ such that $M\cong \bigoplus_{X\in \cal {X}}X^{m_X}$ is studied. A general method of finding the vectors $ m(M)$ is presented (Corollary 2.1, Theorem 2.2 and Corollary 2.3). It is discussed and applied in practice for two classes of algebras: string algebras of finite representation type and hereditary algebras of type $\widetilde{\mathbb{A}}_{p,q}$. In the second case detailed algorithms are given (Algorithms 4.5 and 5.5).
DOI : 10.4064/cm107-2-4
Keywords: given module algebra mit lambda complete set cal pairwise nonisomorphic indecomposable mit lambda modules problem determining vector cal mathbb cal cong bigoplus cal studied general method finding vectors presented corollary theorem corollary discussed applied practice classes algebras string algebras finite representation type hereditary algebras type widetilde mathbb second detailed algorithms given algorithms

Piotr Dowbor 1 ; Andrzej Mróz 1

1 Faculty of Mathematics and Computer Science Nicolaus Copernicus University Chopina 12/18 87-100 Toruń, Poland
@article{10_4064_cm107_2_4,
     author = {Piotr Dowbor and Andrzej Mr\'oz},
     title = {The multiplicity
problem for indecomposable decompositions of
modules over a finite-dimensional algebra. {
Algorithms} and a computer algebra
approach},
     journal = {Colloquium Mathematicum},
     pages = {221--261},
     publisher = {mathdoc},
     volume = {107},
     number = {2},
     year = {2007},
     doi = {10.4064/cm107-2-4},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/cm107-2-4/}
}
TY  - JOUR
AU  - Piotr Dowbor
AU  - Andrzej Mróz
TI  - The multiplicity
problem for indecomposable decompositions of
modules over a finite-dimensional algebra. 
Algorithms and a computer algebra
approach
JO  - Colloquium Mathematicum
PY  - 2007
SP  - 221
EP  - 261
VL  - 107
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/cm107-2-4/
DO  - 10.4064/cm107-2-4
LA  - en
ID  - 10_4064_cm107_2_4
ER  - 
%0 Journal Article
%A Piotr Dowbor
%A Andrzej Mróz
%T The multiplicity
problem for indecomposable decompositions of
modules over a finite-dimensional algebra. 
Algorithms and a computer algebra
approach
%J Colloquium Mathematicum
%D 2007
%P 221-261
%V 107
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/cm107-2-4/
%R 10.4064/cm107-2-4
%G en
%F 10_4064_cm107_2_4
Piotr Dowbor; Andrzej Mróz. The multiplicity
problem for indecomposable decompositions of
modules over a finite-dimensional algebra. 
Algorithms and a computer algebra
approach. Colloquium Mathematicum, Tome 107 (2007) no. 2, pp. 221-261. doi : 10.4064/cm107-2-4. http://geodesic.mathdoc.fr/articles/10.4064/cm107-2-4/

Cité par Sources :