The multiplicity
problem for indecomposable decompositions of
modules over a finite-dimensional algebra.
Algorithms and a computer algebra
approach
Colloquium Mathematicum, Tome 107 (2007) no. 2, pp. 221-261
Cet article a éte moissonné depuis la source Institute of Mathematics Polish Academy of Sciences
Given a module $M$ over an algebra
${\mit\Lambda}$ and a complete set ${\cal{X}}$ of
pairwise nonisomorphic indecomposable
${\mit\Lambda}$-modules, the problem of determining
the vector
$ m(M)=(m_X)_{X\in {\cal{X}}}\in {\mathbb N}^{\cal{X}}$ such that
$M\cong
\bigoplus_{X\in \cal
{X}}X^{m_X}$ is
studied. A general method of finding
the vectors $
m(M)$ is presented
(Corollary 2.1, Theorem 2.2 and
Corollary 2.3).
It is discussed
and applied in practice for two classes of algebras: string
algebras of finite
representation type
and hereditary
algebras of type
$\widetilde{\mathbb{A}}_{p,q}$.
In the second case
detailed algorithms are
given (Algorithms 4.5 and 5.5).
Keywords:
given module algebra mit lambda complete set cal pairwise nonisomorphic indecomposable mit lambda modules problem determining vector cal mathbb cal cong bigoplus cal studied general method finding vectors presented corollary theorem corollary discussed applied practice classes algebras string algebras finite representation type hereditary algebras type widetilde mathbb second detailed algorithms given algorithms
Affiliations des auteurs :
Piotr Dowbor 1 ; Andrzej Mróz 1
@article{10_4064_cm107_2_4,
author = {Piotr Dowbor and Andrzej Mr\'oz},
title = {The multiplicity
problem for indecomposable decompositions of
modules over a finite-dimensional algebra. {
Algorithms} and a computer algebra
approach},
journal = {Colloquium Mathematicum},
pages = {221--261},
year = {2007},
volume = {107},
number = {2},
doi = {10.4064/cm107-2-4},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/cm107-2-4/}
}
TY - JOUR AU - Piotr Dowbor AU - Andrzej Mróz TI - The multiplicity problem for indecomposable decompositions of modules over a finite-dimensional algebra. Algorithms and a computer algebra approach JO - Colloquium Mathematicum PY - 2007 SP - 221 EP - 261 VL - 107 IS - 2 UR - http://geodesic.mathdoc.fr/articles/10.4064/cm107-2-4/ DO - 10.4064/cm107-2-4 LA - en ID - 10_4064_cm107_2_4 ER -
%0 Journal Article %A Piotr Dowbor %A Andrzej Mróz %T The multiplicity problem for indecomposable decompositions of modules over a finite-dimensional algebra. Algorithms and a computer algebra approach %J Colloquium Mathematicum %D 2007 %P 221-261 %V 107 %N 2 %U http://geodesic.mathdoc.fr/articles/10.4064/cm107-2-4/ %R 10.4064/cm107-2-4 %G en %F 10_4064_cm107_2_4
Piotr Dowbor; Andrzej Mróz. The multiplicity problem for indecomposable decompositions of modules over a finite-dimensional algebra. Algorithms and a computer algebra approach. Colloquium Mathematicum, Tome 107 (2007) no. 2, pp. 221-261. doi: 10.4064/cm107-2-4
Cité par Sources :