Trisections of module categories
Colloquium Mathematicum, Tome 107 (2007) no. 2, pp. 191-219
Cet article a éte moissonné depuis la source Institute of Mathematics Polish Academy of Sciences
Let $A$ be a finite-dimensional algebra over a
field $k$. We discuss the existence of trisections
$(\mathop{\rm mod}\nolimits_+A,\mathop{\rm mod}\nolimits_0A,\mathop{\rm mod}\nolimits_-A)$ of the category of finitely generated
modules $\mod A$
satisfying exactness, standardness, separation and adjustment
conditions. Many important classes of algebras admit trisections.
We describe a construction of algebras admitting a
trisection of their module categories and, in special cases, we
describe the structure of the components of the Auslander–Reiten
quiver lying in $\mathop{\rm mod}\nolimits_0A$.
Keywords:
finite dimensional algebra field discuss existence trisections mathop mod nolimits mathop mod nolimits mathop mod nolimits a category finitely generated modules mod satisfying exactness standardness separation adjustment conditions many important classes algebras admit trisections describe construction algebras admitting trisection their module categories special cases describe structure components auslander reiten quiver lying mathop mod nolimits
Affiliations des auteurs :
José A. de la Peña 1 ; Idun Reiten 2
@article{10_4064_cm107_2_3,
author = {Jos\'e A. de la Pe\~na and Idun Reiten},
title = {Trisections of module categories},
journal = {Colloquium Mathematicum},
pages = {191--219},
year = {2007},
volume = {107},
number = {2},
doi = {10.4064/cm107-2-3},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/cm107-2-3/}
}
José A. de la Peña; Idun Reiten. Trisections of module categories. Colloquium Mathematicum, Tome 107 (2007) no. 2, pp. 191-219. doi: 10.4064/cm107-2-3
Cité par Sources :