Absolute continuity for Jacobi matrices
with power-like weights
Colloquium Mathematicum, Tome 107 (2007) no. 2, pp. 179-190
Cet article a éte moissonné depuis la source Institute of Mathematics Polish Academy of Sciences
This work deals with a class of
Jacobi matrices with power-like weights. The main theme is
spectral analysis of matrices with zero diagonal and weights
$\lambda_n:=n^{\alpha}(1+{\mit\Delta}_n)$ where $\alpha\in\left(0,1\right]
$. Asymptotic formulas for generalized eigenvectors are given and
absolute continuity of the matrices considered is proved. The last
section is devoted to spectral analysis of Jacobi matrices with
$q_n=n+1+(-1)^n$ and $\lambda_n=\sqrt{q_{n-1}q_n}$.
Keywords:
work deals class jacobi matrices power like weights main theme spectral analysis matrices zero diagonal weights lambda alpha mit delta where alpha right asymptotic formulas generalized eigenvectors given absolute continuity matrices considered proved section devoted spectral analysis jacobi matrices lambda sqrt n
Affiliations des auteurs :
Wojciech Motyka 1
@article{10_4064_cm107_2_2,
author = {Wojciech Motyka},
title = {Absolute continuity for {Jacobi} matrices
with power-like weights},
journal = {Colloquium Mathematicum},
pages = {179--190},
year = {2007},
volume = {107},
number = {2},
doi = {10.4064/cm107-2-2},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/cm107-2-2/}
}
Wojciech Motyka. Absolute continuity for Jacobi matrices with power-like weights. Colloquium Mathematicum, Tome 107 (2007) no. 2, pp. 179-190. doi: 10.4064/cm107-2-2
Cité par Sources :