On some notions of chaos in dimension zero
Colloquium Mathematicum, Tome 107 (2007) no. 2, pp. 167-177.

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

We compare four different notions of chaos in zero-dimensional systems (subshifts). We provide examples showing that in that case positive topological entropy does not imply strong chaos, strong chaos does not imply complicated dynamics at all, and $\omega $-chaos does not imply Li–Yorke chaos.
DOI : 10.4064/cm107-2-1
Keywords: compare different notions chaos zero dimensional systems subshifts provide examples showing that positive topological entropy does imply strong chaos strong chaos does imply complicated dynamics omega chaos does imply yorke chaos

Rafał Piku/la 1

1 Department of Mathematics Ohio State University 100 Mathematics Building, 231 West 18th Avenue Columbus, OH 43210-1174, U.S.A.
@article{10_4064_cm107_2_1,
     author = {Rafa{\l} Piku/la},
     title = {On some notions of chaos in dimension zero},
     journal = {Colloquium Mathematicum},
     pages = {167--177},
     publisher = {mathdoc},
     volume = {107},
     number = {2},
     year = {2007},
     doi = {10.4064/cm107-2-1},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/cm107-2-1/}
}
TY  - JOUR
AU  - Rafał Piku/la
TI  - On some notions of chaos in dimension zero
JO  - Colloquium Mathematicum
PY  - 2007
SP  - 167
EP  - 177
VL  - 107
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/cm107-2-1/
DO  - 10.4064/cm107-2-1
LA  - en
ID  - 10_4064_cm107_2_1
ER  - 
%0 Journal Article
%A Rafał Piku/la
%T On some notions of chaos in dimension zero
%J Colloquium Mathematicum
%D 2007
%P 167-177
%V 107
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/cm107-2-1/
%R 10.4064/cm107-2-1
%G en
%F 10_4064_cm107_2_1
Rafał Piku/la. On some notions of chaos in dimension zero. Colloquium Mathematicum, Tome 107 (2007) no. 2, pp. 167-177. doi : 10.4064/cm107-2-1. http://geodesic.mathdoc.fr/articles/10.4064/cm107-2-1/

Cité par Sources :