Statistical extensions of some classical Tauberian theorems in nondiscrete setting
Colloquium Mathematicum, Tome 107 (2007) no. 1, pp. 45-56.

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

Schmidt's classical Tauberian theorem says that if a sequence $(s_k : k=0,1,\mathinner {\ldotp \ldotp \ldotp })$ of real numbers is summable $(C,1)$ to a finite limit and slowly decreasing, then it converges to the same limit. In this paper, we prove a nondiscrete version of Schmidt's theorem in the setting of statistical summability $(C,1)$ of real-valued functions that are slowly decreasing on ${{\mathbb R}}_+$. We prove another Tauberian theorem in the case of complex-valued functions that are slowly oscillating on ${{\mathbb R}}_+$. In the proofs we make use of two nondiscrete analogues of the famous Vijayaraghavan lemma, which seem to be new and may be useful in other contexts.
DOI : 10.4064/cm107-1-6
Keywords: schmidts classical tauberian theorem says sequence mathinner ldotp ldotp ldotp real numbers summable finite limit slowly decreasing converges limit paper prove nondiscrete version schmidts theorem setting statistical summability real valued functions slowly decreasing mathbb prove another tauberian theorem complex valued functions slowly oscillating mathbb proofs make nondiscrete analogues famous vijayaraghavan lemma which seem may useful other contexts

Ferenc M/oricz 1

1 Bolyai Institute University of Szeged Aradi vértanúk tere 1 6720 Szeged, Hungary
@article{10_4064_cm107_1_6,
     author = {Ferenc M/oricz},
     title = {Statistical extensions of some classical
 {Tauberian} theorems in nondiscrete setting},
     journal = {Colloquium Mathematicum},
     pages = {45--56},
     publisher = {mathdoc},
     volume = {107},
     number = {1},
     year = {2007},
     doi = {10.4064/cm107-1-6},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/cm107-1-6/}
}
TY  - JOUR
AU  - Ferenc M/oricz
TI  - Statistical extensions of some classical
 Tauberian theorems in nondiscrete setting
JO  - Colloquium Mathematicum
PY  - 2007
SP  - 45
EP  - 56
VL  - 107
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/cm107-1-6/
DO  - 10.4064/cm107-1-6
LA  - en
ID  - 10_4064_cm107_1_6
ER  - 
%0 Journal Article
%A Ferenc M/oricz
%T Statistical extensions of some classical
 Tauberian theorems in nondiscrete setting
%J Colloquium Mathematicum
%D 2007
%P 45-56
%V 107
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/cm107-1-6/
%R 10.4064/cm107-1-6
%G en
%F 10_4064_cm107_1_6
Ferenc M/oricz. Statistical extensions of some classical
 Tauberian theorems in nondiscrete setting. Colloquium Mathematicum, Tome 107 (2007) no. 1, pp. 45-56. doi : 10.4064/cm107-1-6. http://geodesic.mathdoc.fr/articles/10.4064/cm107-1-6/

Cité par Sources :