Pseudoprime Cullen and Woodall numbers
Colloquium Mathematicum, Tome 107 (2007) no. 1, pp. 35-43.

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

We show that if $a>1$ is any fixed integer, then for a sufficiently large $x>1$, the $n$th Cullen number $C_n = n2^n +1$ is a base $a$ pseudoprime only for at most $O(x\log \log x/\! \log x)$ positive integers $n\le x$. This complements a result of E. Heppner which asserts that $C_n$ is prime for at most $O(x/\! \log x)$ of positive integers $n\le x$. We also prove a similar result concerning the pseudoprimality to base $a$ of the Woodall numbers given by $W_n=n2^n-1$ for all $n\ge 1$.
DOI : 10.4064/cm107-1-5
Keywords: fixed integer sufficiently large nth cullen number base pseudoprime only log log log positive integers complements result heppner which asserts prime log positive integers prove similar result concerning pseudoprimality base woodall numbers given n

Florian Luca 1 ; Igor E. Shparlinski 2

1 Instituto de Matemáticas Universidad Nacional Autónoma de México C.P. 58089, Morelia, Michoacán, México
2 Department of Computing Macquarie University Sydney, NSW 2109, Australia
@article{10_4064_cm107_1_5,
     author = {Florian Luca and Igor E. Shparlinski},
     title = {Pseudoprime {Cullen} and {Woodall} numbers},
     journal = {Colloquium Mathematicum},
     pages = {35--43},
     publisher = {mathdoc},
     volume = {107},
     number = {1},
     year = {2007},
     doi = {10.4064/cm107-1-5},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/cm107-1-5/}
}
TY  - JOUR
AU  - Florian Luca
AU  - Igor E. Shparlinski
TI  - Pseudoprime Cullen and Woodall numbers
JO  - Colloquium Mathematicum
PY  - 2007
SP  - 35
EP  - 43
VL  - 107
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/cm107-1-5/
DO  - 10.4064/cm107-1-5
LA  - en
ID  - 10_4064_cm107_1_5
ER  - 
%0 Journal Article
%A Florian Luca
%A Igor E. Shparlinski
%T Pseudoprime Cullen and Woodall numbers
%J Colloquium Mathematicum
%D 2007
%P 35-43
%V 107
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/cm107-1-5/
%R 10.4064/cm107-1-5
%G en
%F 10_4064_cm107_1_5
Florian Luca; Igor E. Shparlinski. Pseudoprime Cullen and Woodall numbers. Colloquium Mathematicum, Tome 107 (2007) no. 1, pp. 35-43. doi : 10.4064/cm107-1-5. http://geodesic.mathdoc.fr/articles/10.4064/cm107-1-5/

Cité par Sources :