Pseudoprime Cullen and Woodall numbers
Colloquium Mathematicum, Tome 107 (2007) no. 1, pp. 35-43
Cet article a éte moissonné depuis la source Institute of Mathematics Polish Academy of Sciences
We show that if $a>1$ is any fixed integer, then for a sufficiently large $x>1$, the $n$th Cullen number $C_n = n2^n +1$ is a base $a$ pseudoprime only for at most $O(x\log \log x/\! \log x)$ positive integers $n\le x$. This complements a result of E. Heppner which asserts that $C_n$ is prime for at most $O(x/\! \log x)$ of positive integers $n\le x$. We also prove a similar result concerning the pseudoprimality to base $a$ of the Woodall numbers given by $W_n=n2^n-1$ for all $n\ge 1$.
Keywords:
fixed integer sufficiently large nth cullen number base pseudoprime only log log log positive integers complements result heppner which asserts prime log positive integers prove similar result concerning pseudoprimality base woodall numbers given n
Affiliations des auteurs :
Florian Luca 1 ; Igor E. Shparlinski 2
@article{10_4064_cm107_1_5,
author = {Florian Luca and Igor E. Shparlinski},
title = {Pseudoprime {Cullen} and {Woodall} numbers},
journal = {Colloquium Mathematicum},
pages = {35--43},
year = {2007},
volume = {107},
number = {1},
doi = {10.4064/cm107-1-5},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/cm107-1-5/}
}
Florian Luca; Igor E. Shparlinski. Pseudoprime Cullen and Woodall numbers. Colloquium Mathematicum, Tome 107 (2007) no. 1, pp. 35-43. doi: 10.4064/cm107-1-5
Cité par Sources :