An overdetermined elliptic problem in a domain
with countably rectifiable boundary
Colloquium Mathematicum, Tome 107 (2007) no. 1, pp. 7-14
Cet article a éte moissonné depuis la source Institute of Mathematics Polish Academy of Sciences
We examine an elliptic equation in a domain ${\mit\Omega} $ whose boundary $\partial {\mit\Omega} $ is countably $(m-1)$-rectifiable. We also assume that $\partial {\mit\Omega} $ satisfies a geometrical condition. We are interested in an overdetermined boundary value problem (examined by Serrin [Arch. Ration. Mech. Anal. 43 (1971)] for classical solutions on domains with smooth boundary). We show that existence of a solution of this problem implies that ${\mit\Omega} $ is an $m$-dimensional Euclidean ball.
Keywords:
examine elliptic equation domain mit omega whose boundary partial mit omega countably m rectifiable assume partial mit omega satisfies geometrical condition interested overdetermined boundary value problem examined serrin arch ration mech anal classical solutions domains smooth boundary existence solution problem implies mit omega m dimensional euclidean ball
Affiliations des auteurs :
Przemys/law G/orka 1
@article{10_4064_cm107_1_2,
author = {Przemys/law G/orka},
title = {An overdetermined elliptic problem in a domain
with countably rectifiable boundary},
journal = {Colloquium Mathematicum},
pages = {7--14},
year = {2007},
volume = {107},
number = {1},
doi = {10.4064/cm107-1-2},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/cm107-1-2/}
}
TY - JOUR AU - Przemys/law G/orka TI - An overdetermined elliptic problem in a domain with countably rectifiable boundary JO - Colloquium Mathematicum PY - 2007 SP - 7 EP - 14 VL - 107 IS - 1 UR - http://geodesic.mathdoc.fr/articles/10.4064/cm107-1-2/ DO - 10.4064/cm107-1-2 LA - en ID - 10_4064_cm107_1_2 ER -
Przemys/law G/orka. An overdetermined elliptic problem in a domain with countably rectifiable boundary. Colloquium Mathematicum, Tome 107 (2007) no. 1, pp. 7-14. doi: 10.4064/cm107-1-2
Cité par Sources :