Weyl submersions of Weyl manifolds
Colloquium Mathematicum, Tome 107 (2007) no. 1, pp. 119-140
Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences
We define Weyl submersions, for which we derive equations analogous to the Gauss and Codazzi equations for an isometric immersion. We obtain a necessary and sufficient condition for the total space of a Weyl submersion to admit an Einstein–Weyl structure. Moreover, we investigate the Einstein–Weyl structure of canonical variations of the total space with Einstein–Weyl structure.
Keywords:
define weyl submersions which derive equations analogous gauss codazzi equations isometric immersion obtain necessary sufficient condition total space weyl submersion admit einstein weyl structure moreover investigate einstein weyl structure canonical variations total space einstein weyl structure
Affiliations des auteurs :
Fumio Narita 1
@article{10_4064_cm107_1_11,
author = {Fumio Narita},
title = {Weyl submersions of {Weyl} manifolds},
journal = {Colloquium Mathematicum},
pages = {119--140},
publisher = {mathdoc},
volume = {107},
number = {1},
year = {2007},
doi = {10.4064/cm107-1-11},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/cm107-1-11/}
}
Fumio Narita. Weyl submersions of Weyl manifolds. Colloquium Mathematicum, Tome 107 (2007) no. 1, pp. 119-140. doi: 10.4064/cm107-1-11
Cité par Sources :