Weyl submersions of Weyl manifolds
Colloquium Mathematicum, Tome 107 (2007) no. 1, pp. 119-140.

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

We define Weyl submersions, for which we derive equations analogous to the Gauss and Codazzi equations for an isometric immersion. We obtain a necessary and sufficient condition for the total space of a Weyl submersion to admit an Einstein–Weyl structure. Moreover, we investigate the Einstein–Weyl structure of canonical variations of the total space with Einstein–Weyl structure.
DOI : 10.4064/cm107-1-11
Keywords: define weyl submersions which derive equations analogous gauss codazzi equations isometric immersion obtain necessary sufficient condition total space weyl submersion admit einstein weyl structure moreover investigate einstein weyl structure canonical variations total space einstein weyl structure

Fumio Narita 1

1 Department of Mathematics Akita National College of Technology Akita 011-8511, Japan
@article{10_4064_cm107_1_11,
     author = {Fumio Narita},
     title = {Weyl submersions of {Weyl} manifolds},
     journal = {Colloquium Mathematicum},
     pages = {119--140},
     publisher = {mathdoc},
     volume = {107},
     number = {1},
     year = {2007},
     doi = {10.4064/cm107-1-11},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/cm107-1-11/}
}
TY  - JOUR
AU  - Fumio Narita
TI  - Weyl submersions of Weyl manifolds
JO  - Colloquium Mathematicum
PY  - 2007
SP  - 119
EP  - 140
VL  - 107
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/cm107-1-11/
DO  - 10.4064/cm107-1-11
LA  - en
ID  - 10_4064_cm107_1_11
ER  - 
%0 Journal Article
%A Fumio Narita
%T Weyl submersions of Weyl manifolds
%J Colloquium Mathematicum
%D 2007
%P 119-140
%V 107
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/cm107-1-11/
%R 10.4064/cm107-1-11
%G en
%F 10_4064_cm107_1_11
Fumio Narita. Weyl submersions of Weyl manifolds. Colloquium Mathematicum, Tome 107 (2007) no. 1, pp. 119-140. doi : 10.4064/cm107-1-11. http://geodesic.mathdoc.fr/articles/10.4064/cm107-1-11/

Cité par Sources :