Spectral properties of ergodic dynamical systems
conjugate to their composition squares
Colloquium Mathematicum, Tome 107 (2007) no. 1, pp. 99-118
Cet article a éte moissonné depuis la source Institute of Mathematics Polish Academy of Sciences
Let $S$ and $T$ be automorphisms of a standard Borel probability space. Some ergodic and spectral consequences of the equation $ST=T^2S$ are given for $T$ ergodic and also when $T^n=I$ for some $n>2$. These ideas are used to construct examples of ergodic automorphisms $S$ with oscillating maximal spectral multiplicity function. Other examples illustrating the theory are given, including Gaussian automorphisms having simple spectra and conjugate to their squares.
Keywords:
automorphisms standard borel probability space ergodic spectral consequences equation given ergodic these ideas construct examples ergodic automorphisms oscillating maximal spectral multiplicity function other examples illustrating theory given including gaussian automorphisms having simple spectra conjugate their squares
Affiliations des auteurs :
Geoffrey R. Goodson 1
@article{10_4064_cm107_1_10,
author = {Geoffrey R. Goodson},
title = {Spectral properties of ergodic dynamical systems
conjugate to their composition squares},
journal = {Colloquium Mathematicum},
pages = {99--118},
year = {2007},
volume = {107},
number = {1},
doi = {10.4064/cm107-1-10},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/cm107-1-10/}
}
TY - JOUR AU - Geoffrey R. Goodson TI - Spectral properties of ergodic dynamical systems conjugate to their composition squares JO - Colloquium Mathematicum PY - 2007 SP - 99 EP - 118 VL - 107 IS - 1 UR - http://geodesic.mathdoc.fr/articles/10.4064/cm107-1-10/ DO - 10.4064/cm107-1-10 LA - en ID - 10_4064_cm107_1_10 ER -
Geoffrey R. Goodson. Spectral properties of ergodic dynamical systems conjugate to their composition squares. Colloquium Mathematicum, Tome 107 (2007) no. 1, pp. 99-118. doi: 10.4064/cm107-1-10
Cité par Sources :