Kempisty's theorem for the integral product quasicontinuity
Colloquium Mathematicum, Tome 106 (2006) no. 2, pp. 257-264.

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

A function $f:\mathbb R ^n \to \mathbb R$ satisfies the condition $Q_i(x)$ (resp. $Q_s(x)$, $Q_o(x)$) at a point $x$ if for each real $r > 0$ and for each set $U \ni x$ open in the Euclidean topology of $\mathbb R^n$ (resp. strong density topology, ordinary density topology) there is an open set $I$ such that $I \cap U \neq \emptyset $ and $|(1/\mu (U\cap I))\int_{U \cap I} f(t)\,dt - f(x)| r$. Kempisty's theorem concerning the product quasicontinuity is investigated for the above notions.
DOI : 10.4064/cm106-2-6
Keywords: function mathbb mathbb satisfies condition resp point each real each set euclidean topology nbsp mathbb resp strong density topology ordinary density topology there set cap neq emptyset cap int cap kempistys theorem concerning product quasicontinuity investigated above notions

Zbigniew Grande 1

1 Institute of Mathematics Kazimierz Wielki University Plac Weyssenhoffa 11 85-072 Bydgoszcz, Poland
@article{10_4064_cm106_2_6,
     author = {Zbigniew Grande},
     title = {Kempisty's theorem for the integral product quasicontinuity},
     journal = {Colloquium Mathematicum},
     pages = {257--264},
     publisher = {mathdoc},
     volume = {106},
     number = {2},
     year = {2006},
     doi = {10.4064/cm106-2-6},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/cm106-2-6/}
}
TY  - JOUR
AU  - Zbigniew Grande
TI  - Kempisty's theorem for the integral product quasicontinuity
JO  - Colloquium Mathematicum
PY  - 2006
SP  - 257
EP  - 264
VL  - 106
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/cm106-2-6/
DO  - 10.4064/cm106-2-6
LA  - en
ID  - 10_4064_cm106_2_6
ER  - 
%0 Journal Article
%A Zbigniew Grande
%T Kempisty's theorem for the integral product quasicontinuity
%J Colloquium Mathematicum
%D 2006
%P 257-264
%V 106
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/cm106-2-6/
%R 10.4064/cm106-2-6
%G en
%F 10_4064_cm106_2_6
Zbigniew Grande. Kempisty's theorem for the integral product quasicontinuity. Colloquium Mathematicum, Tome 106 (2006) no. 2, pp. 257-264. doi : 10.4064/cm106-2-6. http://geodesic.mathdoc.fr/articles/10.4064/cm106-2-6/

Cité par Sources :