The Dunford–Pettis property, the Gelfand–Phillips property, and $L$-sets
Colloquium Mathematicum, Tome 106 (2006) no. 2, pp. 311-324.

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

The Dunford–Pettis property and the Gelfand–Phillips property are studied in the context of spaces of operators. The idea of $L$-sets is used to give a dual characterization of the Dunford–Pettis property.
DOI : 10.4064/cm106-2-11
Keywords: dunford pettis property gelfand phillips property studied context spaces operators idea l sets dual characterization dunford pettis property

Ioana Ghenciu 1 ; Paul Lewis 2

1 Department of Mathematics University of Wisconsin at River Falls River Falls, WI 54022, U.S.A.
2 Department of Mathematics University of North Texas Box 311430 Denton, TX 76203-1430, U.S.A.
@article{10_4064_cm106_2_11,
     author = {Ioana Ghenciu and Paul Lewis},
     title = {The {Dunford{\textendash}Pettis} property,
 the {Gelfand{\textendash}Phillips} property, and $L$-sets},
     journal = {Colloquium Mathematicum},
     pages = {311--324},
     publisher = {mathdoc},
     volume = {106},
     number = {2},
     year = {2006},
     doi = {10.4064/cm106-2-11},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/cm106-2-11/}
}
TY  - JOUR
AU  - Ioana Ghenciu
AU  - Paul Lewis
TI  - The Dunford–Pettis property,
 the Gelfand–Phillips property, and $L$-sets
JO  - Colloquium Mathematicum
PY  - 2006
SP  - 311
EP  - 324
VL  - 106
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/cm106-2-11/
DO  - 10.4064/cm106-2-11
LA  - en
ID  - 10_4064_cm106_2_11
ER  - 
%0 Journal Article
%A Ioana Ghenciu
%A Paul Lewis
%T The Dunford–Pettis property,
 the Gelfand–Phillips property, and $L$-sets
%J Colloquium Mathematicum
%D 2006
%P 311-324
%V 106
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/cm106-2-11/
%R 10.4064/cm106-2-11
%G en
%F 10_4064_cm106_2_11
Ioana Ghenciu; Paul Lewis. The Dunford–Pettis property,
 the Gelfand–Phillips property, and $L$-sets. Colloquium Mathematicum, Tome 106 (2006) no. 2, pp. 311-324. doi : 10.4064/cm106-2-11. http://geodesic.mathdoc.fr/articles/10.4064/cm106-2-11/

Cité par Sources :