CB-degenerations and rigid degenerations of algebras
Colloquium Mathematicum, Tome 106 (2006) no. 2, pp. 305-310.

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

The main aim of this note is to prove that if $k$ is an algebraically closed field and a $k$-algebra $A_0$ is a CB-degeneration of a finite-dimensional $k$-algebra $A_1$, then there exists a factor algebra $\,\overline{\!A}_0$ of $A_0$ of the same dimension as $A_1$ such that $\,\overline{\!A}_0$ is a CB-degeneration of $A_1$. As a consequence, $\,\overline{\!A}_0$ is a rigid degeneration of $A_1$, provided $A_0$ is basic.
DOI : 10.4064/cm106-2-10
Keywords: main note prove algebraically closed field k algebra cb degeneration finite dimensional k algebra there exists factor algebra overline dimension overline cb degeneration consequence overline rigid degeneration provided basic

Adam Hajduk 1

1 Faculty of Mathematics and Computer Science Nicolaus Copernicus University Chopina 12/18 87-100 Toruń, Poland
@article{10_4064_cm106_2_10,
     author = {Adam Hajduk},
     title = {CB-degenerations and rigid degenerations
 of algebras},
     journal = {Colloquium Mathematicum},
     pages = {305--310},
     publisher = {mathdoc},
     volume = {106},
     number = {2},
     year = {2006},
     doi = {10.4064/cm106-2-10},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/cm106-2-10/}
}
TY  - JOUR
AU  - Adam Hajduk
TI  - CB-degenerations and rigid degenerations
 of algebras
JO  - Colloquium Mathematicum
PY  - 2006
SP  - 305
EP  - 310
VL  - 106
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/cm106-2-10/
DO  - 10.4064/cm106-2-10
LA  - en
ID  - 10_4064_cm106_2_10
ER  - 
%0 Journal Article
%A Adam Hajduk
%T CB-degenerations and rigid degenerations
 of algebras
%J Colloquium Mathematicum
%D 2006
%P 305-310
%V 106
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/cm106-2-10/
%R 10.4064/cm106-2-10
%G en
%F 10_4064_cm106_2_10
Adam Hajduk. CB-degenerations and rigid degenerations
 of algebras. Colloquium Mathematicum, Tome 106 (2006) no. 2, pp. 305-310. doi : 10.4064/cm106-2-10. http://geodesic.mathdoc.fr/articles/10.4064/cm106-2-10/

Cité par Sources :