CB-degenerations and rigid degenerations
of algebras
Colloquium Mathematicum, Tome 106 (2006) no. 2, pp. 305-310
Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences
The main aim
of this note is to prove that if $k$ is an algebraically closed field and
a $k$-algebra $A_0$ is a
CB-degeneration of a finite-dimensional $k$-algebra $A_1$, then
there exists a factor algebra $\,\overline{\!A}_0$ of $A_0$ of the
same dimension as $A_1$
such that $\,\overline{\!A}_0$ is a CB-degeneration of $A_1$. As
a consequence, $\,\overline{\!A}_0$ is a rigid
degeneration of $A_1$, provided $A_0$ is basic.
Keywords:
main note prove algebraically closed field k algebra cb degeneration finite dimensional k algebra there exists factor algebra overline dimension overline cb degeneration consequence overline rigid degeneration provided basic
Affiliations des auteurs :
Adam Hajduk 1
@article{10_4064_cm106_2_10,
author = {Adam Hajduk},
title = {CB-degenerations and rigid degenerations
of algebras},
journal = {Colloquium Mathematicum},
pages = {305--310},
publisher = {mathdoc},
volume = {106},
number = {2},
year = {2006},
doi = {10.4064/cm106-2-10},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/cm106-2-10/}
}
Adam Hajduk. CB-degenerations and rigid degenerations of algebras. Colloquium Mathematicum, Tome 106 (2006) no. 2, pp. 305-310. doi: 10.4064/cm106-2-10
Cité par Sources :