The type set for homogeneous singular
measures
on $\mathbb{R}^{3}$ of polynomial type
Colloquium Mathematicum, Tome 106 (2006) no. 2, pp. 161-175
Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences
Let
$\varphi:\mathbb{R}^{2}\rightarrow\mathbb{R}$ be a homogeneous
polynomial function of degree ${m\geq2}$, let $\mu$ be the
Borel measure on $\mathbb{R}^{3}$ defined by
$\mu( E) =\int_{D}\chi_{E}
(x,\varphi(x)) \,dx$ with $D=\{ x\in\mathbb{R}
^{2}:| x | \leq 1\} $ and let $T_{\mu}$ be the convolution
operator with the measure $\mu$. Let $\varphi=
\varphi_{1}^{e_{1}}\cdots \varphi_{n}^{e_{n}}$
be the decomposition of $\varphi$ into irreducible factors.
We show that if
$e_{i}\neq{m}/{2}$ for each $%
\varphi_{i}$ of degree $1$, then the type set
$E_{\mu}:=\{( {1}/{p},{1}/{q})\in[ 0,1]
\times [ 0,1] :\| T_{\mu}\| _{p,q}\infty\} $ can be explicitly
described as a closed polygonal region.
Keywords:
varphi mathbb rightarrow mathbb homogeneous polynomial function degree geq borel measure mathbb defined int chi varphi mathbb leq convolution operator measure varphi varphi cdots varphi decomposition varphi irreducible factors neq each varphi degree type set times infty explicitly described closed polygonal region
Affiliations des auteurs :
E. Ferreyra 1 ; T. Godoy 1
@article{10_4064_cm106_2_1,
author = {E. Ferreyra and T. Godoy},
title = {The type set for homogeneous singular
measures
on $\mathbb{R}^{3}$ of polynomial type},
journal = {Colloquium Mathematicum},
pages = {161--175},
publisher = {mathdoc},
volume = {106},
number = {2},
year = {2006},
doi = {10.4064/cm106-2-1},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/cm106-2-1/}
}
TY - JOUR
AU - E. Ferreyra
AU - T. Godoy
TI - The type set for homogeneous singular
measures
on $\mathbb{R}^{3}$ of polynomial type
JO - Colloquium Mathematicum
PY - 2006
SP - 161
EP - 175
VL - 106
IS - 2
PB - mathdoc
UR - http://geodesic.mathdoc.fr/articles/10.4064/cm106-2-1/
DO - 10.4064/cm106-2-1
LA - en
ID - 10_4064_cm106_2_1
ER -
%0 Journal Article
%A E. Ferreyra
%A T. Godoy
%T The type set for homogeneous singular
measures
on $\mathbb{R}^{3}$ of polynomial type
%J Colloquium Mathematicum
%D 2006
%P 161-175
%V 106
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/cm106-2-1/
%R 10.4064/cm106-2-1
%G en
%F 10_4064_cm106_2_1
E. Ferreyra; T. Godoy. The type set for homogeneous singular
measures
on $\mathbb{R}^{3}$ of polynomial type. Colloquium Mathematicum, Tome 106 (2006) no. 2, pp. 161-175. doi: 10.4064/cm106-2-1
Cité par Sources :