Gagliardo–Nirenberg inequalities in logarithmic spaces
Colloquium Mathematicum, Tome 106 (2006) no. 1, pp. 93-107.

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

We obtain interpolation inequalities for derivatives: \begin{multline*} \int M_{q,\alpha}(|\nabla f (x)|)\,dx \\\leq C\bigg[ \int M_{p,\beta }({\mit\Phi} _1(x, |f|,|\nabla^{(2)}f| ))\, dx+ \int M_{r,\gamma } ({\mit\Phi} _2(x, |f|,|\nabla^{(2)}f| ))\, dx\bigg] ,\end{multline*} and their counterparts expressed in Orlicz norms: \[ \|\nabla f\|_{(q,\alpha)}^2\leq C\| {\mit\Phi} _1(x, |f|,|\nabla^{(2)}f|) \|_{(p,\beta)}\, \| {\mit\Phi} _2(x, |f|,|\nabla^{(2)}f|) \|_{(r,\gamma)}, \] where $\|\cdot \|_{(s,\kappa)}$ is the Orlicz norm relative to the function $M_{s,\kappa}(t)=t^s(\ln(2+t))^{\kappa}.$ The parameters $p,q,r,\alpha,\beta,\gamma$ and the Carathéodory functions ${\mit\Phi} _1,{\mit\Phi} _2$ are supposed to satisfy certain consistency conditions. Some of the classical Gagliardo–Nirenberg inequalities follow as a special case. Gagliardo–Nirenberg inequalities in logarithmic spaces with higher order gradients are also considered.
DOI : 10.4064/cm106-1-8
Keywords: obtain interpolation inequalities derivatives begin multline* int alpha nabla leq bigg int beta mit phi nabla int gamma mit phi nabla bigg end multline* their counterparts expressed orlicz norms nabla alpha leq mit phi nabla beta mit phi nabla gamma where cdot kappa orlicz norm relative function kappa kappa parameters alpha beta gamma carath odory functions mit phi mit phi supposed satisfy certain consistency conditions classical gagliardo nirenberg inequalities follow special gagliardo nirenberg inequalities logarithmic spaces higher order gradients considered

Agnieszka Ka/lamajska 1 ; Katarzyna Pietruska-Pa/luba 1

1 Institute of Mathematics Warsaw University Banacha 2 02-097 Warszawa, Poland
@article{10_4064_cm106_1_8,
     author = {Agnieszka Ka/lamajska and Katarzyna Pietruska-Pa/luba},
     title = {Gagliardo{\textendash}Nirenberg inequalities in logarithmic spaces},
     journal = {Colloquium Mathematicum},
     pages = {93--107},
     publisher = {mathdoc},
     volume = {106},
     number = {1},
     year = {2006},
     doi = {10.4064/cm106-1-8},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/cm106-1-8/}
}
TY  - JOUR
AU  - Agnieszka Ka/lamajska
AU  - Katarzyna Pietruska-Pa/luba
TI  - Gagliardo–Nirenberg inequalities in logarithmic spaces
JO  - Colloquium Mathematicum
PY  - 2006
SP  - 93
EP  - 107
VL  - 106
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/cm106-1-8/
DO  - 10.4064/cm106-1-8
LA  - en
ID  - 10_4064_cm106_1_8
ER  - 
%0 Journal Article
%A Agnieszka Ka/lamajska
%A Katarzyna Pietruska-Pa/luba
%T Gagliardo–Nirenberg inequalities in logarithmic spaces
%J Colloquium Mathematicum
%D 2006
%P 93-107
%V 106
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/cm106-1-8/
%R 10.4064/cm106-1-8
%G en
%F 10_4064_cm106_1_8
Agnieszka Ka/lamajska; Katarzyna Pietruska-Pa/luba. Gagliardo–Nirenberg inequalities in logarithmic spaces. Colloquium Mathematicum, Tome 106 (2006) no. 1, pp. 93-107. doi : 10.4064/cm106-1-8. http://geodesic.mathdoc.fr/articles/10.4064/cm106-1-8/

Cité par Sources :