Finite-dimensional maps and dendrites with dense sets of end points
Colloquium Mathematicum, Tome 106 (2006) no. 1, pp. 83-91.

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

The first author has recently proved that if $f: X \to Y$ is a $k$-dimensional map between compacta and $Y$ is $p$-dimensional ($0 \le k,p \infty $), then for each $0 \leq i \leq p+k$, the set of maps $g$ in the space $C(X,I^{p+2k+1-i})$ such that the diagonal product $f \times g:X \to Y\times I^{p+2k+1-i}$ is an $(i+1)$-to-$1$ map is a dense $G_{\delta }$-subset of $C(X,I^{p+2k+1-i})$. In this paper, we prove that if $f$ : $X \to Y$ is as above and $D_{j}$ $(j=1,\dots ,k)$ are superdendrites, then the set of maps $h$ in $C(X,\prod _{j=1}^{k}D_{j}\times I^{p+1-i})$ such that $f \times h:X \to Y\times (\prod _{j=1}^{k}D_{j}\times I^{p+1-i})$ is $(i+1)$-to-$1$ is a dense $G_{\delta }$-subset of $C(X,\prod _{j=1}^{k}D_{j}\times I^{p+1-i})$ for each $0\leq i \leq p$.
DOI : 10.4064/cm106-1-7
Keywords: first author has recently proved k dimensional map between compacta p dimensional infty each leq leq set maps space i diagonal product times times i to map dense delta subset i paper prove above dots superdendrites set maps prod times i times times prod times i to dense delta subset prod times i each leq leq

Hisao Kato 1 ; Eiichi Matsuhashi 1

1 Institute of Mathematics University of Tsukuba Ibaraki, 305-8571 Japan
@article{10_4064_cm106_1_7,
     author = {Hisao Kato and Eiichi Matsuhashi},
     title = {Finite-dimensional maps and dendrites with
 dense sets of end points},
     journal = {Colloquium Mathematicum},
     pages = {83--91},
     publisher = {mathdoc},
     volume = {106},
     number = {1},
     year = {2006},
     doi = {10.4064/cm106-1-7},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/cm106-1-7/}
}
TY  - JOUR
AU  - Hisao Kato
AU  - Eiichi Matsuhashi
TI  - Finite-dimensional maps and dendrites with
 dense sets of end points
JO  - Colloquium Mathematicum
PY  - 2006
SP  - 83
EP  - 91
VL  - 106
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/cm106-1-7/
DO  - 10.4064/cm106-1-7
LA  - en
ID  - 10_4064_cm106_1_7
ER  - 
%0 Journal Article
%A Hisao Kato
%A Eiichi Matsuhashi
%T Finite-dimensional maps and dendrites with
 dense sets of end points
%J Colloquium Mathematicum
%D 2006
%P 83-91
%V 106
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/cm106-1-7/
%R 10.4064/cm106-1-7
%G en
%F 10_4064_cm106_1_7
Hisao Kato; Eiichi Matsuhashi. Finite-dimensional maps and dendrites with
 dense sets of end points. Colloquium Mathematicum, Tome 106 (2006) no. 1, pp. 83-91. doi : 10.4064/cm106-1-7. http://geodesic.mathdoc.fr/articles/10.4064/cm106-1-7/

Cité par Sources :