Scattering theory for a nonlinear system of wave equations with critical growth
Colloquium Mathematicum, Tome 106 (2006) no. 1, pp. 69-81.

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

We consider scattering properties of the critical nonlinear system of wave equations with Hamilton structure $$ \cases{ u_{tt}-{\mit \Delta } u=-F_1(|u|^2,|v|^2)u,\cr v_{tt}-{\mit \Delta } v=-F_2(|u|^2, |v|^2)v, \cr }$$ for which there exists a function $F(\lambda , \mu )$ such that $$ {\partial F(\lambda ,\mu )\over \partial \lambda }=F_1(\lambda ,\mu ),\hskip 1em {\partial F(\lambda ,\mu )\over \partial \mu }=F_2(\lambda ,\mu ). $$ By using the energy-conservation law over the exterior of a truncated forward light cone and a dilation identity, we get a decay estimate for the potential energy. The resulting global-in-time estimates imply immediately the existence of the wave operators and the scattering operator.
DOI : 10.4064/cm106-1-6
Keywords: consider scattering properties critical nonlinear system wave equations hamilton structure cases mit delta f mit delta f which there exists function lambda partial lambda partial lambda lambda hskip partial lambda partial lambda using energy conservation law exterior truncated forward light cone dilation identity get decay estimate potential energy resulting global in time estimates imply immediately existence wave operators scattering operator

Changxing Miao 1 ; Youbin Zhu 1

1 Institute of Applied Physics and Computational Mathematics P.O. Box 8009 Beijing 100088, China
@article{10_4064_cm106_1_6,
     author = {Changxing Miao and Youbin Zhu},
     title = {Scattering theory for a nonlinear system
  of wave equations with critical growth},
     journal = {Colloquium Mathematicum},
     pages = {69--81},
     publisher = {mathdoc},
     volume = {106},
     number = {1},
     year = {2006},
     doi = {10.4064/cm106-1-6},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/cm106-1-6/}
}
TY  - JOUR
AU  - Changxing Miao
AU  - Youbin Zhu
TI  - Scattering theory for a nonlinear system
  of wave equations with critical growth
JO  - Colloquium Mathematicum
PY  - 2006
SP  - 69
EP  - 81
VL  - 106
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/cm106-1-6/
DO  - 10.4064/cm106-1-6
LA  - en
ID  - 10_4064_cm106_1_6
ER  - 
%0 Journal Article
%A Changxing Miao
%A Youbin Zhu
%T Scattering theory for a nonlinear system
  of wave equations with critical growth
%J Colloquium Mathematicum
%D 2006
%P 69-81
%V 106
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/cm106-1-6/
%R 10.4064/cm106-1-6
%G en
%F 10_4064_cm106_1_6
Changxing Miao; Youbin Zhu. Scattering theory for a nonlinear system
  of wave equations with critical growth. Colloquium Mathematicum, Tome 106 (2006) no. 1, pp. 69-81. doi : 10.4064/cm106-1-6. http://geodesic.mathdoc.fr/articles/10.4064/cm106-1-6/

Cité par Sources :