On the convergence of moments in the CLT for
triangular arrays with an application
to random polynomials
Colloquium Mathematicum, Tome 106 (2006) no. 1, pp. 147-160
Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences
We give a proof of convergence of moments in the Central Limit Theorem (under the Lyapunov–Lindeberg condition) for triangular arrays, yielding a new estimate of the speed of convergence expressed in terms of $\nu $th moments. We also give an application to the convergence in the mean of the $p$th moments of certain random trigonometric polynomials built from triangular arrays of independent random variables, thereby extending some recent work of Borwein and Lockhart.
Keywords:
proof convergence moments central limit theorem under lyapunov lindeberg condition triangular arrays yielding estimate speed convergence expressed terms moments application convergence mean pth moments certain random trigonometric polynomials built triangular arrays independent random variables thereby extending recent work borwein lockhart
Affiliations des auteurs :
Christophe Cuny 1 ; Michel Weber 2
@article{10_4064_cm106_1_13,
author = {Christophe Cuny and Michel Weber},
title = {On the convergence of moments in the {CLT} for
triangular arrays with an application
to random polynomials},
journal = {Colloquium Mathematicum},
pages = {147--160},
publisher = {mathdoc},
volume = {106},
number = {1},
year = {2006},
doi = {10.4064/cm106-1-13},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/cm106-1-13/}
}
TY - JOUR AU - Christophe Cuny AU - Michel Weber TI - On the convergence of moments in the CLT for triangular arrays with an application to random polynomials JO - Colloquium Mathematicum PY - 2006 SP - 147 EP - 160 VL - 106 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.4064/cm106-1-13/ DO - 10.4064/cm106-1-13 LA - en ID - 10_4064_cm106_1_13 ER -
%0 Journal Article %A Christophe Cuny %A Michel Weber %T On the convergence of moments in the CLT for triangular arrays with an application to random polynomials %J Colloquium Mathematicum %D 2006 %P 147-160 %V 106 %N 1 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.4064/cm106-1-13/ %R 10.4064/cm106-1-13 %G en %F 10_4064_cm106_1_13
Christophe Cuny; Michel Weber. On the convergence of moments in the CLT for triangular arrays with an application to random polynomials. Colloquium Mathematicum, Tome 106 (2006) no. 1, pp. 147-160. doi: 10.4064/cm106-1-13
Cité par Sources :