Rational functions without poles in a compact set
Colloquium Mathematicum, Tome 106 (2006) no. 1, pp. 119-125.

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

Let $X$ be an irreducible nonsingular complex algebraic set and let $K$ be a compact subset of $X$. We study algebraic properties of the ring of rational functions on $X$ without poles in $K$. We give simple necessary conditions for this ring to be a regular ring or a unique factorization domain.
DOI : 10.4064/cm106-1-10
Keywords: irreducible nonsingular complex algebraic set compact subset nbsp study algebraic properties ring rational functions nbsp without poles nbsp simple necessary conditions ring regular ring unique factorization domain

W. Kucharz 1

1 Max-Planck-Institut für Mathematik Vivatsgasse 7 53111 Bonn, Germany and Department of Mathematics and Statistics University of New Mexico Albuquerque, NM 87131-1141, U.S.A.
@article{10_4064_cm106_1_10,
     author = {W. Kucharz},
     title = {Rational functions without poles in a compact set},
     journal = {Colloquium Mathematicum},
     pages = {119--125},
     publisher = {mathdoc},
     volume = {106},
     number = {1},
     year = {2006},
     doi = {10.4064/cm106-1-10},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/cm106-1-10/}
}
TY  - JOUR
AU  - W. Kucharz
TI  - Rational functions without poles in a compact set
JO  - Colloquium Mathematicum
PY  - 2006
SP  - 119
EP  - 125
VL  - 106
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/cm106-1-10/
DO  - 10.4064/cm106-1-10
LA  - en
ID  - 10_4064_cm106_1_10
ER  - 
%0 Journal Article
%A W. Kucharz
%T Rational functions without poles in a compact set
%J Colloquium Mathematicum
%D 2006
%P 119-125
%V 106
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/cm106-1-10/
%R 10.4064/cm106-1-10
%G en
%F 10_4064_cm106_1_10
W. Kucharz. Rational functions without poles in a compact set. Colloquium Mathematicum, Tome 106 (2006) no. 1, pp. 119-125. doi : 10.4064/cm106-1-10. http://geodesic.mathdoc.fr/articles/10.4064/cm106-1-10/

Cité par Sources :