Rational functions without poles in a compact set
Colloquium Mathematicum, Tome 106 (2006) no. 1, pp. 119-125
Cet article a éte moissonné depuis la source Institute of Mathematics Polish Academy of Sciences
Let $X$ be an irreducible nonsingular complex algebraic set and let $K$ be a compact subset
of $X$. We study algebraic properties of the ring of rational functions
on $X$ without poles in $K$. We give simple necessary conditions for this ring to be a regular ring or a unique factorization domain.
Keywords:
irreducible nonsingular complex algebraic set compact subset nbsp study algebraic properties ring rational functions nbsp without poles nbsp simple necessary conditions ring regular ring unique factorization domain
Affiliations des auteurs :
W. Kucharz 1
@article{10_4064_cm106_1_10,
author = {W. Kucharz},
title = {Rational functions without poles in a compact set},
journal = {Colloquium Mathematicum},
pages = {119--125},
year = {2006},
volume = {106},
number = {1},
doi = {10.4064/cm106-1-10},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/cm106-1-10/}
}
W. Kucharz. Rational functions without poles in a compact set. Colloquium Mathematicum, Tome 106 (2006) no. 1, pp. 119-125. doi: 10.4064/cm106-1-10
Cité par Sources :