Absolute $n$-fold hyperspace suspensions
Colloquium Mathematicum, Tome 105 (2006) no. 2, pp. 221-231
Cet article a éte moissonné depuis la source Institute of Mathematics Polish Academy of Sciences
The notion of an absolute $n$-fold hyperspace suspension is introduced. It is proved that these hyperspaces are unicoherent Peano continua and are dimensionally homogeneous. It is shown that the $2$-sphere is the only finite-dimensional absolute $1$-fold hyperspace suspension. Furthermore, it is shown that there are only two possible finite-dimensional absolute $n$-fold hyperspace suspensions for each $n\geq 3$ and none when $n=2$. Finally, it is shown that infinite-dimensional absolute $n$-fold hyperspace suspensions must be unicoherent Hilbert cube manifolds.
Keywords:
notion absolute n fold hyperspace suspension introduced proved these hyperspaces unicoherent peano continua dimensionally homogeneous shown sphere only finite dimensional absolute fold hyperspace suspension furthermore shown there only possible finite dimensional absolute n fold hyperspace suspensions each geq none finally shown infinite dimensional absolute n fold hyperspace suspensions unicoherent hilbert cube manifolds
Affiliations des auteurs :
Sergio Macías 1 ; Sam B. Nadler, Jr. 2
@article{10_4064_cm105_2_5,
author = {Sergio Mac{\'\i}as and Sam B. Nadler, Jr.},
title = {Absolute $n$-fold hyperspace suspensions},
journal = {Colloquium Mathematicum},
pages = {221--231},
year = {2006},
volume = {105},
number = {2},
doi = {10.4064/cm105-2-5},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/cm105-2-5/}
}
Sergio Macías; Sam B. Nadler, Jr. Absolute $n$-fold hyperspace suspensions. Colloquium Mathematicum, Tome 105 (2006) no. 2, pp. 221-231. doi: 10.4064/cm105-2-5
Cité par Sources :