Strong mixing Markov semigroups on ${C}_1$ are meager
Colloquium Mathematicum, Tome 105 (2006) no. 2, pp. 311-317.

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

We show that the set of those Markov semigroups on the Schatten class ${\cal C}_{1}$ such that in the strong operator topology $\lim_{t \to \infty} T(t) = Q $, where $Q$ is a one-dimensional projection, form a meager subset of all Markov semigroups.
DOI : 10.4064/cm105-2-11
Keywords: set those markov semigroups schatten class cal strong operator topology lim infty where one dimensional projection form meager subset markov semigroups

Wojciech Bartoszek 1 ; Beata Kuna 1

1 Department of Mathematics Gdańsk University of Technology Narutowicza 11/12 80-952 Gdańsk, Poland
@article{10_4064_cm105_2_11,
     author = {Wojciech Bartoszek and Beata Kuna},
     title = {Strong mixing {Markov} semigroups on ${C}_1$ are meager},
     journal = {Colloquium Mathematicum},
     pages = {311--317},
     publisher = {mathdoc},
     volume = {105},
     number = {2},
     year = {2006},
     doi = {10.4064/cm105-2-11},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/cm105-2-11/}
}
TY  - JOUR
AU  - Wojciech Bartoszek
AU  - Beata Kuna
TI  - Strong mixing Markov semigroups on ${C}_1$ are meager
JO  - Colloquium Mathematicum
PY  - 2006
SP  - 311
EP  - 317
VL  - 105
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/cm105-2-11/
DO  - 10.4064/cm105-2-11
LA  - en
ID  - 10_4064_cm105_2_11
ER  - 
%0 Journal Article
%A Wojciech Bartoszek
%A Beata Kuna
%T Strong mixing Markov semigroups on ${C}_1$ are meager
%J Colloquium Mathematicum
%D 2006
%P 311-317
%V 105
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/cm105-2-11/
%R 10.4064/cm105-2-11
%G en
%F 10_4064_cm105_2_11
Wojciech Bartoszek; Beata Kuna. Strong mixing Markov semigroups on ${C}_1$ are meager. Colloquium Mathematicum, Tome 105 (2006) no. 2, pp. 311-317. doi : 10.4064/cm105-2-11. http://geodesic.mathdoc.fr/articles/10.4064/cm105-2-11/

Cité par Sources :