The Euler and Helmholtz operators on fibered manifolds with oriented bases
Colloquium Mathematicum, Tome 105 (2006) no. 2, pp. 171-177.

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

We study naturality of the Euler and Helmholtz operators arising in the variational calculus in fibered manifolds with oriented bases.
DOI : 10.4064/cm105-2-1
Keywords: study naturality euler helmholtz operators arising variational calculus fibered manifolds oriented bases

J. Kurek 1 ; W. M. Mikulski 2

1 Institute of Mathematics Maria Curie-Skłodowska University Pl. Marii Curie-Skłodowskiej 1 20-031 Lublin, Poland
2 Institute of Mathematics Jagiellonian University Reymonta 4 31-059 Kraków, Poland
@article{10_4064_cm105_2_1,
     author = {J. Kurek and W. M. Mikulski},
     title = {The {Euler} and {Helmholtz} operators
 on fibered manifolds with oriented bases},
     journal = {Colloquium Mathematicum},
     pages = {171--177},
     publisher = {mathdoc},
     volume = {105},
     number = {2},
     year = {2006},
     doi = {10.4064/cm105-2-1},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/cm105-2-1/}
}
TY  - JOUR
AU  - J. Kurek
AU  - W. M. Mikulski
TI  - The Euler and Helmholtz operators
 on fibered manifolds with oriented bases
JO  - Colloquium Mathematicum
PY  - 2006
SP  - 171
EP  - 177
VL  - 105
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/cm105-2-1/
DO  - 10.4064/cm105-2-1
LA  - en
ID  - 10_4064_cm105_2_1
ER  - 
%0 Journal Article
%A J. Kurek
%A W. M. Mikulski
%T The Euler and Helmholtz operators
 on fibered manifolds with oriented bases
%J Colloquium Mathematicum
%D 2006
%P 171-177
%V 105
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/cm105-2-1/
%R 10.4064/cm105-2-1
%G en
%F 10_4064_cm105_2_1
J. Kurek; W. M. Mikulski. The Euler and Helmholtz operators
 on fibered manifolds with oriented bases. Colloquium Mathematicum, Tome 105 (2006) no. 2, pp. 171-177. doi : 10.4064/cm105-2-1. http://geodesic.mathdoc.fr/articles/10.4064/cm105-2-1/

Cité par Sources :