Double sine series with nonnegative coefficients
and Lipschitz classes
Colloquium Mathematicum, Tome 105 (2006) no. 1, pp. 25-34
Cet article a éte moissonné depuis la source Institute of Mathematics Polish Academy of Sciences
Denote by $f_{\rm ss}(x,y)$ the sum of a double sine series with nonnegative coefficients. We present necessary and sufficient coefficient conditions in order that $f_{\rm ss}$ belongs to the two-dimensional multiplicative Lipschitz class ${\rm Lip}(\alpha ,\beta )$ for some $0\alpha \le 1$ and $0\beta \le 1.$ Our theorems are extensions of the corresponding theorems by Boas for single sine series.
Keywords:
denote sum double sine series nonnegative coefficients present necessary sufficient coefficient conditions order belongs two dimensional multiplicative lipschitz class lip alpha beta alpha beta theorems extensions corresponding theorems boas single sine series
Affiliations des auteurs :
Vanda Fülöp  1
@article{10_4064_cm105_1_3,
author = {Vanda F\"ul\"op},
title = {Double sine series with nonnegative coefficients
and {Lipschitz} classes},
journal = {Colloquium Mathematicum},
pages = {25--34},
year = {2006},
volume = {105},
number = {1},
doi = {10.4064/cm105-1-3},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/cm105-1-3/}
}
Vanda Fülöp. Double sine series with nonnegative coefficients and Lipschitz classes. Colloquium Mathematicum, Tome 105 (2006) no. 1, pp. 25-34. doi: 10.4064/cm105-1-3
Cité par Sources :