Differentiable $L^p$-functional calculus for certain sums of non-commuting operators
Colloquium Mathematicum, Tome 105 (2006) no. 1, pp. 105-125.

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

We consider a special class of sums of non-commuting positive operators on $L^2$-spaces and derive a formula for their holomorphic semigroups. The formula enables us to give sufficient conditions for these operators to admit differentiable $L^p$-functional calculus for $1\leq p \leq \infty $. Our results are in particular applicable to certain sub-Laplacians, Schrödinger operators and sums of even powers of vector fields on solvable Lie groups with exponential volume growth.
DOI : 10.4064/cm105-1-10
Keywords: consider special class sums non commuting positive operators spaces derive formula their holomorphic semigroups formula enables sufficient conditions these operators admit differentiable p functional calculus leq leq infty results particular applicable certain sub laplacians schr dinger operators sums even powers vector fields solvable lie groups exponential volume growth

Michael Gnewuch 1

1 Max Planck Institute for Mathematics in the Sciences Inselstr. 22 D-04103 Leipzig, Germany
@article{10_4064_cm105_1_10,
     author = {Michael Gnewuch},
     title = {Differentiable $L^p$-functional calculus for certain
 sums of non-commuting operators},
     journal = {Colloquium Mathematicum},
     pages = {105--125},
     publisher = {mathdoc},
     volume = {105},
     number = {1},
     year = {2006},
     doi = {10.4064/cm105-1-10},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/cm105-1-10/}
}
TY  - JOUR
AU  - Michael Gnewuch
TI  - Differentiable $L^p$-functional calculus for certain
 sums of non-commuting operators
JO  - Colloquium Mathematicum
PY  - 2006
SP  - 105
EP  - 125
VL  - 105
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/cm105-1-10/
DO  - 10.4064/cm105-1-10
LA  - en
ID  - 10_4064_cm105_1_10
ER  - 
%0 Journal Article
%A Michael Gnewuch
%T Differentiable $L^p$-functional calculus for certain
 sums of non-commuting operators
%J Colloquium Mathematicum
%D 2006
%P 105-125
%V 105
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/cm105-1-10/
%R 10.4064/cm105-1-10
%G en
%F 10_4064_cm105_1_10
Michael Gnewuch. Differentiable $L^p$-functional calculus for certain
 sums of non-commuting operators. Colloquium Mathematicum, Tome 105 (2006) no. 1, pp. 105-125. doi : 10.4064/cm105-1-10. http://geodesic.mathdoc.fr/articles/10.4064/cm105-1-10/

Cité par Sources :