An m-convex $B_0$-algebra with all left but not all right ideals closed
Colloquium Mathematicum, Tome 104 (2006) no. 2, pp. 317-324.

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

We construct an example as announced in the title. We also indicate all right, left and two-sided ideals in this example.
DOI : 10.4064/cm104-2-8
Keywords: construct example announced title indicate right two sided ideals example

W. Żelazko 1

1 Institute of Mathematics Polish Academy of Sciences Śniadeckich 8 P.O. Box 21 00-956 Warszawa, Poland
@article{10_4064_cm104_2_8,
     author = {W. \.Zelazko},
     title = {An m-convex $B_0$-algebra
 with all left but not all right ideals closed},
     journal = {Colloquium Mathematicum},
     pages = {317--324},
     publisher = {mathdoc},
     volume = {104},
     number = {2},
     year = {2006},
     doi = {10.4064/cm104-2-8},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/cm104-2-8/}
}
TY  - JOUR
AU  - W. Żelazko
TI  - An m-convex $B_0$-algebra
 with all left but not all right ideals closed
JO  - Colloquium Mathematicum
PY  - 2006
SP  - 317
EP  - 324
VL  - 104
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/cm104-2-8/
DO  - 10.4064/cm104-2-8
LA  - en
ID  - 10_4064_cm104_2_8
ER  - 
%0 Journal Article
%A W. Żelazko
%T An m-convex $B_0$-algebra
 with all left but not all right ideals closed
%J Colloquium Mathematicum
%D 2006
%P 317-324
%V 104
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/cm104-2-8/
%R 10.4064/cm104-2-8
%G en
%F 10_4064_cm104_2_8
W. Żelazko. An m-convex $B_0$-algebra
 with all left but not all right ideals closed. Colloquium Mathematicum, Tome 104 (2006) no. 2, pp. 317-324. doi : 10.4064/cm104-2-8. http://geodesic.mathdoc.fr/articles/10.4064/cm104-2-8/

Cité par Sources :