Remarks on the region of attraction of an
isolated invariant set
Colloquium Mathematicum, Tome 104 (2006) no. 2, pp. 157-167
Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences
We study the complexity of the flow in the region of attraction of an isolated invariant set. More precisely, we define the instablity depth, which is an ordinal and measures how far an isolated invariant set is from being asymptotically stable within its region of attraction. We provide upper and lower bounds of the instability depth in certain cases.
Keywords:
study complexity flow region attraction isolated invariant set precisely define instablity depth which ordinal measures far isolated invariant set being asymptotically stable within its region attraction provide upper lower bounds instability depth certain cases
Affiliations des auteurs :
Konstantin Athanassopoulos 1
@article{10_4064_cm104_2_1,
author = {Konstantin Athanassopoulos},
title = {Remarks on the region of attraction of an
isolated invariant set},
journal = {Colloquium Mathematicum},
pages = {157--167},
publisher = {mathdoc},
volume = {104},
number = {2},
year = {2006},
doi = {10.4064/cm104-2-1},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/cm104-2-1/}
}
TY - JOUR AU - Konstantin Athanassopoulos TI - Remarks on the region of attraction of an isolated invariant set JO - Colloquium Mathematicum PY - 2006 SP - 157 EP - 167 VL - 104 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.4064/cm104-2-1/ DO - 10.4064/cm104-2-1 LA - en ID - 10_4064_cm104_2_1 ER -
Konstantin Athanassopoulos. Remarks on the region of attraction of an isolated invariant set. Colloquium Mathematicum, Tome 104 (2006) no. 2, pp. 157-167. doi: 10.4064/cm104-2-1
Cité par Sources :