An explicit construction for the Happel functor
Colloquium Mathematicum, Tome 104 (2006) no. 1, pp. 141-149
Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences
An easy explicit construction is given for a full and faithful
functor from the bounded derived category of modules over
an associative algebra $A$ to the stable category of the repetitive
algebra of $A$. This construction simplifies the one given by Happel.
Keywords:
easy explicit construction given full faithful functor bounded derived category modules associative algebra stable category repetitive algebra construction simplifies given happel
Affiliations des auteurs :
M. Barot 1 ; O. Mendoza 1
@article{10_4064_cm104_1_9,
author = {M. Barot and O. Mendoza},
title = {An explicit construction for the {Happel} functor},
journal = {Colloquium Mathematicum},
pages = {141--149},
publisher = {mathdoc},
volume = {104},
number = {1},
year = {2006},
doi = {10.4064/cm104-1-9},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/cm104-1-9/}
}
M. Barot; O. Mendoza. An explicit construction for the Happel functor. Colloquium Mathematicum, Tome 104 (2006) no. 1, pp. 141-149. doi: 10.4064/cm104-1-9
Cité par Sources :