On the spectral multiplicity of a direct sum of operators
Colloquium Mathematicum, Tome 104 (2006) no. 1, pp. 105-112
Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences
We calculate the spectral multiplicity of the direct sum $T\oplus A$ of
a weighted shift operator $T$ on a Banach space $Y$ which is continuously
embedded in $l^{p}$ and a suitable bounded linear operator $A$ on a Banach
space $X$.
Keywords:
calculate spectral multiplicity direct sum oplus weighted shift operator banach space which continuously embedded suitable bounded linear operator banach space
Affiliations des auteurs :
M. T. Karaev 1
@article{10_4064_cm104_1_7,
author = {M. T. Karaev},
title = {On the spectral multiplicity of a direct sum of operators},
journal = {Colloquium Mathematicum},
pages = {105--112},
publisher = {mathdoc},
volume = {104},
number = {1},
year = {2006},
doi = {10.4064/cm104-1-7},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/cm104-1-7/}
}
M. T. Karaev. On the spectral multiplicity of a direct sum of operators. Colloquium Mathematicum, Tome 104 (2006) no. 1, pp. 105-112. doi: 10.4064/cm104-1-7
Cité par Sources :