On the spectral multiplicity of a direct sum of operators
Colloquium Mathematicum, Tome 104 (2006) no. 1, pp. 105-112.

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

We calculate the spectral multiplicity of the direct sum $T\oplus A$ of a weighted shift operator $T$ on a Banach space $Y$ which is continuously embedded in $l^{p}$ and a suitable bounded linear operator $A$ on a Banach space $X$.
DOI : 10.4064/cm104-1-7
Keywords: calculate spectral multiplicity direct sum oplus weighted shift operator banach space which continuously embedded suitable bounded linear operator banach space

M. T. Karaev 1

1 Suleyman Demirel University Department of Mathematics 32260 Isparta, Turkey
@article{10_4064_cm104_1_7,
     author = {M. T. Karaev},
     title = {On the spectral multiplicity of a direct sum of operators},
     journal = {Colloquium Mathematicum},
     pages = {105--112},
     publisher = {mathdoc},
     volume = {104},
     number = {1},
     year = {2006},
     doi = {10.4064/cm104-1-7},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/cm104-1-7/}
}
TY  - JOUR
AU  - M. T. Karaev
TI  - On the spectral multiplicity of a direct sum of operators
JO  - Colloquium Mathematicum
PY  - 2006
SP  - 105
EP  - 112
VL  - 104
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/cm104-1-7/
DO  - 10.4064/cm104-1-7
LA  - en
ID  - 10_4064_cm104_1_7
ER  - 
%0 Journal Article
%A M. T. Karaev
%T On the spectral multiplicity of a direct sum of operators
%J Colloquium Mathematicum
%D 2006
%P 105-112
%V 104
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/cm104-1-7/
%R 10.4064/cm104-1-7
%G en
%F 10_4064_cm104_1_7
M. T. Karaev. On the spectral multiplicity of a direct sum of operators. Colloquium Mathematicum, Tome 104 (2006) no. 1, pp. 105-112. doi : 10.4064/cm104-1-7. http://geodesic.mathdoc.fr/articles/10.4064/cm104-1-7/

Cité par Sources :