On the approximation of real continuous functions
by series of solutions of a single system
of partial differential equations
Colloquium Mathematicum, Tome 104 (2006) no. 1, pp. 57-84
Cet article a éte moissonné depuis la source Institute of Mathematics Polish Academy of Sciences
We prove the existence of an effectively computable integer polynomial
$P(x,t_0,\dots ,t_5) $ having the following property. Every
continuous function $f: {\mathbb R}^s \to {\mathbb R} $ can be approximated with
arbitrary accuracy by an infinite sum
$$
\sum_{r=1}^{\infty} H_r(x_1,\dots ,x_s) \in C^{\infty}({\mathbb R}^s)
$$
of analytic functions $H_r $, each solving the same system of universal partial
differential equations, namely
$$
P\bigg( x_{\sigma}; H_r , \frac{\partial H_r}{\partial x_{\sigma}}
, \dots , \frac{{\partial}^5 H_r}{\partial x_{\sigma}^5} \bigg)
= 0 \quad\ (\sigma =1, \dots ,s) .
$$
Keywords:
prove existence effectively computable integer polynomial dots having following property every continuous function mathbb mathbb approximated arbitrary accuracy infinite sum sum infty dots infty mathbb analytic functions each solving system universal partial differential equations namely bigg sigma frac partial partial sigma dots frac partial partial sigma bigg quad sigma dots
Affiliations des auteurs :
Carsten Elsner  1
@article{10_4064_cm104_1_4,
author = {Carsten Elsner},
title = {On the approximation of real continuous functions
by series of solutions of a single system
of partial differential equations},
journal = {Colloquium Mathematicum},
pages = {57--84},
year = {2006},
volume = {104},
number = {1},
doi = {10.4064/cm104-1-4},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/cm104-1-4/}
}
TY - JOUR AU - Carsten Elsner TI - On the approximation of real continuous functions by series of solutions of a single system of partial differential equations JO - Colloquium Mathematicum PY - 2006 SP - 57 EP - 84 VL - 104 IS - 1 UR - http://geodesic.mathdoc.fr/articles/10.4064/cm104-1-4/ DO - 10.4064/cm104-1-4 LA - en ID - 10_4064_cm104_1_4 ER -
%0 Journal Article %A Carsten Elsner %T On the approximation of real continuous functions by series of solutions of a single system of partial differential equations %J Colloquium Mathematicum %D 2006 %P 57-84 %V 104 %N 1 %U http://geodesic.mathdoc.fr/articles/10.4064/cm104-1-4/ %R 10.4064/cm104-1-4 %G en %F 10_4064_cm104_1_4
Carsten Elsner. On the approximation of real continuous functions by series of solutions of a single system of partial differential equations. Colloquium Mathematicum, Tome 104 (2006) no. 1, pp. 57-84. doi: 10.4064/cm104-1-4
Cité par Sources :