Characterization of local dimension functions of subsets of ${\Bbb R}^{d}$
Colloquium Mathematicum, Tome 103 (2005) no. 2, pp. 231-239.

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

For a subset $E\subseteq {\mathbb R}^{d}$ and $x\in {\mathbb R}^{d}$, the local Hausdorff dimension function of $E$ at $x$ is defined by $$ \mathop {\rm dim} \nolimits _{{\mathsf H}, {\mathsf loc}}(x,E) = \mathop {\rm lim}_{r\searrow 0}\mathop {\rm dim}\nolimits _{ {\sf H}}(E\cap B(x,r)) $$ where $\mathop {\rm dim}\nolimits _{{\sf H}}$ denotes the Hausdorff dimension. We give a complete characterization of the set of functions that are local Hausdorff dimension functions. In fact, we prove a significantly more general result, namely, we give a complete characterization of those functions that are local dimension functions of an arbitrary regular dimension index.
DOI : 10.4064/cm103-2-8
Keywords: subset subseteq mathbb mathbb local hausdorff dimension function defined mathop dim nolimits mathsf mathsf loc mathop lim searrow mathop dim nolimits cap where mathop dim nolimits denotes hausdorff dimension complete characterization set functions local hausdorff dimension functions prove significantly general result namely complete characterization those functions local dimension functions arbitrary regular dimension index

L. Olsen 1

1 Department of Mathematics University of St. Andrews St. Andrews, Fife KY16 9SS, Scotland
@article{10_4064_cm103_2_8,
     author = {L. Olsen},
     title = {Characterization of local dimension functions
 of subsets of ${\Bbb R}^{d}$},
     journal = {Colloquium Mathematicum},
     pages = {231--239},
     publisher = {mathdoc},
     volume = {103},
     number = {2},
     year = {2005},
     doi = {10.4064/cm103-2-8},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/cm103-2-8/}
}
TY  - JOUR
AU  - L. Olsen
TI  - Characterization of local dimension functions
 of subsets of ${\Bbb R}^{d}$
JO  - Colloquium Mathematicum
PY  - 2005
SP  - 231
EP  - 239
VL  - 103
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/cm103-2-8/
DO  - 10.4064/cm103-2-8
LA  - en
ID  - 10_4064_cm103_2_8
ER  - 
%0 Journal Article
%A L. Olsen
%T Characterization of local dimension functions
 of subsets of ${\Bbb R}^{d}$
%J Colloquium Mathematicum
%D 2005
%P 231-239
%V 103
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/cm103-2-8/
%R 10.4064/cm103-2-8
%G en
%F 10_4064_cm103_2_8
L. Olsen. Characterization of local dimension functions
 of subsets of ${\Bbb R}^{d}$. Colloquium Mathematicum, Tome 103 (2005) no. 2, pp. 231-239. doi : 10.4064/cm103-2-8. http://geodesic.mathdoc.fr/articles/10.4064/cm103-2-8/

Cité par Sources :