Characterization of local dimension functions
of subsets of ${\Bbb R}^{d}$
Colloquium Mathematicum, Tome 103 (2005) no. 2, pp. 231-239
Cet article a éte moissonné depuis la source Institute of Mathematics Polish Academy of Sciences
For a subset $E\subseteq {\mathbb R}^{d}$ and $x\in {\mathbb R}^{d}$, the local Hausdorff dimension function of $E$ at $x$ is defined by $$ \mathop {\rm dim}
\nolimits _{{\mathsf H}, {\mathsf loc}}(x,E) = \mathop {\rm lim}_{r\searrow 0}\mathop {\rm dim}\nolimits _{ {\sf H}}(E\cap B(x,r)) $$ where $\mathop {\rm dim}\nolimits _{{\sf H}}$ denotes the Hausdorff dimension. We give a complete characterization of the set of functions that are local Hausdorff dimension functions. In fact, we prove a significantly more general result, namely, we give a complete characterization of those functions that are local dimension functions of an arbitrary regular dimension index.
Keywords:
subset subseteq mathbb mathbb local hausdorff dimension function defined mathop dim nolimits mathsf mathsf loc mathop lim searrow mathop dim nolimits cap where mathop dim nolimits denotes hausdorff dimension complete characterization set functions local hausdorff dimension functions prove significantly general result namely complete characterization those functions local dimension functions arbitrary regular dimension index
Affiliations des auteurs :
L. Olsen 1
@article{10_4064_cm103_2_8,
author = {L. Olsen},
title = {Characterization of local dimension functions
of subsets of ${\Bbb R}^{d}$},
journal = {Colloquium Mathematicum},
pages = {231--239},
year = {2005},
volume = {103},
number = {2},
doi = {10.4064/cm103-2-8},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/cm103-2-8/}
}
L. Olsen. Characterization of local dimension functions
of subsets of ${\Bbb R}^{d}$. Colloquium Mathematicum, Tome 103 (2005) no. 2, pp. 231-239. doi: 10.4064/cm103-2-8
Cité par Sources :