Sur les processus quasi-Markoviens et certains de leurs facteurs
Colloquium Mathematicum, Tome 103 (2005) no. 2, pp. 215-230
Cet article a éte moissonné depuis la source Institute of Mathematics Polish Academy of Sciences
We study a class of stationary finite state processes, called
quasi-Markovian, including in particular the
processes whose law is a Gibbs measure as defined by Bowen.
We show that, if a factor with integrable coding time of a
quasi-Markovian process is maximal in entropy, then this factor
splits off, which means that it admits a Bernoulli shift as
an independent complement. If it is not maximal in entropy,
then we can find a splitting finite extension of this factor,
which generalizes a theorem of Rahe. In particular,
this result applies to a factor of a hyperbolic automorphism
of the torus generated by a partition which is regular enough.
Mots-clés :
study class stationary finite state processes called quasi markovian including particular processes whose law gibbs measure defined bowen factor integrable coding time quasi markovian process maximal entropy factor splits off which means admits bernoulli shift independent complement maximal entropy splitting finite extension factor which generalizes theorem rahe particular result applies factor hyperbolic automorphism torus generated partition which regular enough
Affiliations des auteurs :
Thierry de la Rue  1
@article{10_4064_cm103_2_7,
author = {Thierry de la Rue},
title = {Sur les processus {quasi-Markoviens} et certains de leurs facteurs},
journal = {Colloquium Mathematicum},
pages = {215--230},
year = {2005},
volume = {103},
number = {2},
doi = {10.4064/cm103-2-7},
language = {fr},
url = {http://geodesic.mathdoc.fr/articles/10.4064/cm103-2-7/}
}
Thierry de la Rue. Sur les processus quasi-Markoviens et certains de leurs facteurs. Colloquium Mathematicum, Tome 103 (2005) no. 2, pp. 215-230. doi: 10.4064/cm103-2-7
Cité par Sources :