Estimates for the Hardy–Littlewood maximal function on the Heisenberg group
Colloquium Mathematicum, Tome 103 (2005) no. 2, pp. 199-205.

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

We prove the dimension free estimates of the $L^p\rightarrow L^p$, $1 p\leq \infty $, norms of the Hardy–Littlewood maximal operator related to the optimal control balls on the Heisenberg group ${{\mathbb H}}^n$.
DOI : 10.4064/cm103-2-5
Keywords: prove dimension estimates rightarrow leq infty norms hardy littlewood maximal operator related optimal control balls heisenberg group mathbb

Jacek Zienkiewicz 1

1 Institute of Mathematics Wrocław University Pl. Grunwaldzki 2/4 50-384 Wrocław, Poland
@article{10_4064_cm103_2_5,
     author = {Jacek Zienkiewicz},
     title = {Estimates for
  the {Hardy{\textendash}Littlewood} maximal function
  on the {Heisenberg} group},
     journal = {Colloquium Mathematicum},
     pages = {199--205},
     publisher = {mathdoc},
     volume = {103},
     number = {2},
     year = {2005},
     doi = {10.4064/cm103-2-5},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/cm103-2-5/}
}
TY  - JOUR
AU  - Jacek Zienkiewicz
TI  - Estimates for
  the Hardy–Littlewood maximal function
  on the Heisenberg group
JO  - Colloquium Mathematicum
PY  - 2005
SP  - 199
EP  - 205
VL  - 103
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/cm103-2-5/
DO  - 10.4064/cm103-2-5
LA  - en
ID  - 10_4064_cm103_2_5
ER  - 
%0 Journal Article
%A Jacek Zienkiewicz
%T Estimates for
  the Hardy–Littlewood maximal function
  on the Heisenberg group
%J Colloquium Mathematicum
%D 2005
%P 199-205
%V 103
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/cm103-2-5/
%R 10.4064/cm103-2-5
%G en
%F 10_4064_cm103_2_5
Jacek Zienkiewicz. Estimates for
  the Hardy–Littlewood maximal function
  on the Heisenberg group. Colloquium Mathematicum, Tome 103 (2005) no. 2, pp. 199-205. doi : 10.4064/cm103-2-5. http://geodesic.mathdoc.fr/articles/10.4064/cm103-2-5/

Cité par Sources :