Orlicz bounds for operators of restricted weak type
Colloquium Mathematicum, Tome 103 (2005) no. 2, pp. 193-197.

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

It is shown that if $T$ is a sublinear translation invariant operator of restricted weak type $(1,1)$ acting on $L^{1}(\mathbb{T})$, then $T$ maps simple functions in $L \log L (\mathbb{T})$ boundedly into $L^{1}(\mathbb{T})$.
DOI : 10.4064/cm103-2-4
Keywords: shown sublinear translation invariant operator restricted weak type acting mathbb maps simple functions log mathbb boundedly mathbb

Paul Alton Hagelstein 1

1 Department of Mathematics Baylor University Waco, TX 76798, U.S.A.
@article{10_4064_cm103_2_4,
     author = {Paul Alton Hagelstein},
     title = {Orlicz bounds for  operators of restricted weak type},
     journal = {Colloquium Mathematicum},
     pages = {193--197},
     publisher = {mathdoc},
     volume = {103},
     number = {2},
     year = {2005},
     doi = {10.4064/cm103-2-4},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/cm103-2-4/}
}
TY  - JOUR
AU  - Paul Alton Hagelstein
TI  - Orlicz bounds for  operators of restricted weak type
JO  - Colloquium Mathematicum
PY  - 2005
SP  - 193
EP  - 197
VL  - 103
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/cm103-2-4/
DO  - 10.4064/cm103-2-4
LA  - en
ID  - 10_4064_cm103_2_4
ER  - 
%0 Journal Article
%A Paul Alton Hagelstein
%T Orlicz bounds for  operators of restricted weak type
%J Colloquium Mathematicum
%D 2005
%P 193-197
%V 103
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/cm103-2-4/
%R 10.4064/cm103-2-4
%G en
%F 10_4064_cm103_2_4
Paul Alton Hagelstein. Orlicz bounds for  operators of restricted weak type. Colloquium Mathematicum, Tome 103 (2005) no. 2, pp. 193-197. doi : 10.4064/cm103-2-4. http://geodesic.mathdoc.fr/articles/10.4064/cm103-2-4/

Cité par Sources :