Equivalence relations induced by some locally
compact groups of homeomorphisms of $2^{\mathbb {N}}$
Colloquium Mathematicum, Tome 103 (2005) no. 2, pp. 287-301
Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences
Let $T$ be a locally finite rooted tree and $B(T)$ be the
boundary space of $T$.
We study locally compact subgroups of the group
${\rm TH}(B(T))=\langle {\rm Iso}(T),V\rangle$ generated by the group
${\rm Iso}(T)$ of all isometries of $B(T)$ and the group $V$ of
Richard Thompson.
We describe orbit equivalence relations arising from actions
of these groups on $B(T)$.
Keywords:
locally finite rooted tree boundary space nbsp study locally compact subgroups group langle iso rangle generated group iso isometries group richard thompson describe orbit equivalence relations arising actions these groups
Affiliations des auteurs :
B. Majcher-Iwanow 1
@article{10_4064_cm103_2_12,
author = {B. Majcher-Iwanow},
title = {Equivalence relations induced by some locally
compact groups of homeomorphisms of $2^{\mathbb {N}}$},
journal = {Colloquium Mathematicum},
pages = {287--301},
publisher = {mathdoc},
volume = {103},
number = {2},
year = {2005},
doi = {10.4064/cm103-2-12},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/cm103-2-12/}
}
TY - JOUR
AU - B. Majcher-Iwanow
TI - Equivalence relations induced by some locally
compact groups of homeomorphisms of $2^{\mathbb {N}}$
JO - Colloquium Mathematicum
PY - 2005
SP - 287
EP - 301
VL - 103
IS - 2
PB - mathdoc
UR - http://geodesic.mathdoc.fr/articles/10.4064/cm103-2-12/
DO - 10.4064/cm103-2-12
LA - en
ID - 10_4064_cm103_2_12
ER -
%0 Journal Article
%A B. Majcher-Iwanow
%T Equivalence relations induced by some locally
compact groups of homeomorphisms of $2^{\mathbb {N}}$
%J Colloquium Mathematicum
%D 2005
%P 287-301
%V 103
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/cm103-2-12/
%R 10.4064/cm103-2-12
%G en
%F 10_4064_cm103_2_12
B. Majcher-Iwanow. Equivalence relations induced by some locally
compact groups of homeomorphisms of $2^{\mathbb {N}}$. Colloquium Mathematicum, Tome 103 (2005) no. 2, pp. 287-301. doi: 10.4064/cm103-2-12
Cité par Sources :