Isometries of spaces of convex compact subsets
of globally non-positively Busemann curved spaces
Colloquium Mathematicum, Tome 103 (2005) no. 1, pp. 71-84
Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences
We consider the Hausdorff metric on the space of compact convex subsets of a proper, geodesically complete metric space of globally non-positive Busemann curvature in which geodesics do not split, and characterize their surjective isometries. Moreover, an analogous characterization of the surjective isometries of the space of compact subsets of a proper, uniquely geodesic, geodesically complete metric space in which geodesics do not split is given.
Keywords:
consider hausdorff metric space compact convex subsets proper geodesically complete metric space globally non positive busemann curvature which geodesics split characterize their surjective isometries moreover analogous characterization surjective isometries space compact subsets proper uniquely geodesic geodesically complete metric space which geodesics split given
Affiliations des auteurs :
Thomas Foertsch 1
@article{10_4064_cm103_1_9,
author = {Thomas Foertsch},
title = {Isometries of spaces of convex compact subsets
of globally non-positively {Busemann} curved spaces},
journal = {Colloquium Mathematicum},
pages = {71--84},
publisher = {mathdoc},
volume = {103},
number = {1},
year = {2005},
doi = {10.4064/cm103-1-9},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/cm103-1-9/}
}
TY - JOUR AU - Thomas Foertsch TI - Isometries of spaces of convex compact subsets of globally non-positively Busemann curved spaces JO - Colloquium Mathematicum PY - 2005 SP - 71 EP - 84 VL - 103 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.4064/cm103-1-9/ DO - 10.4064/cm103-1-9 LA - en ID - 10_4064_cm103_1_9 ER -
%0 Journal Article %A Thomas Foertsch %T Isometries of spaces of convex compact subsets of globally non-positively Busemann curved spaces %J Colloquium Mathematicum %D 2005 %P 71-84 %V 103 %N 1 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.4064/cm103-1-9/ %R 10.4064/cm103-1-9 %G en %F 10_4064_cm103_1_9
Thomas Foertsch. Isometries of spaces of convex compact subsets of globally non-positively Busemann curved spaces. Colloquium Mathematicum, Tome 103 (2005) no. 1, pp. 71-84. doi: 10.4064/cm103-1-9
Cité par Sources :