The multiplicative and functional independence of Dedekind zeta functions of abelian fields
Colloquium Mathematicum, Tome 103 (2005) no. 1, pp. 11-16.

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

It is shown that the multiplicative independence of Dedekind zeta functions of abelian fields is equivalent to their functional independence. We also give all the possible multiplicative dependence relations for any set of Dedekind zeta functions of abelian fields.
DOI : 10.4064/cm103-1-2
Keywords: shown multiplicative independence dedekind zeta functions abelian fields equivalent their functional independence possible multiplicative dependence relations set dedekind zeta functions abelian fields

Roman Marszałek 1

1 Institute of Mathematics Wrocław University Plac Grunwaldzki 2/4 50-384 Wrocław, Poland
@article{10_4064_cm103_1_2,
     author = {Roman Marsza{\l}ek},
     title = {The multiplicative and functional independence of  {Dedekind} zeta functions of abelian fields},
     journal = {Colloquium Mathematicum},
     pages = {11--16},
     publisher = {mathdoc},
     volume = {103},
     number = {1},
     year = {2005},
     doi = {10.4064/cm103-1-2},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/cm103-1-2/}
}
TY  - JOUR
AU  - Roman Marszałek
TI  - The multiplicative and functional independence of  Dedekind zeta functions of abelian fields
JO  - Colloquium Mathematicum
PY  - 2005
SP  - 11
EP  - 16
VL  - 103
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/cm103-1-2/
DO  - 10.4064/cm103-1-2
LA  - en
ID  - 10_4064_cm103_1_2
ER  - 
%0 Journal Article
%A Roman Marszałek
%T The multiplicative and functional independence of  Dedekind zeta functions of abelian fields
%J Colloquium Mathematicum
%D 2005
%P 11-16
%V 103
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/cm103-1-2/
%R 10.4064/cm103-1-2
%G en
%F 10_4064_cm103_1_2
Roman Marszałek. The multiplicative and functional independence of  Dedekind zeta functions of abelian fields. Colloquium Mathematicum, Tome 103 (2005) no. 1, pp. 11-16. doi : 10.4064/cm103-1-2. http://geodesic.mathdoc.fr/articles/10.4064/cm103-1-2/

Cité par Sources :